Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Leukemia ; 38(5): 936-946, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38514772

RESUMEN

Clonal hematopoiesis (CH) defines a premalignant state predominantly found in older persons that increases the risk of developing hematologic malignancies and age-related inflammatory diseases. However, the risk for malignant transformation or non-malignant disorders is variable and difficult to predict, and defining the clinical relevance of specific candidate driver mutations in individual carriers has proved to be challenging. In addition to the cell-intrinsic mechanisms, mutant cells rely on and alter cell-extrinsic factors from the bone marrow (BM) niche, which complicates the prediction of a mutant cell's fate in a shifting pre-malignant microenvironment. Therefore, identifying the insidious and potentially broad impact of driver mutations on supportive niches and immune function in CH aims to understand the subtle differences that enable driver mutations to yield different clinical outcomes. Here, we review the changes in the aging BM niche and the emerging evidence supporting the concept that CH can progressively alter components of the local BM microenvironment. These alterations may have profound implications for the functionality of the osteo-hematopoietic niche and overall bone health, consequently fostering a conducive environment for the continued development and progression of CH. We also provide an overview of the latest technology developments to study the spatiotemporal dependencies in the CH BM niche, ideally in the context of longitudinal studies following CH over time. Finally, we discuss aspects of CH carrier management in clinical practice, based on work from our group and others.


Asunto(s)
Envejecimiento , Hematopoyesis Clonal , Nicho de Células Madre , Humanos , Hematopoyesis Clonal/genética , Envejecimiento/genética , Envejecimiento/fisiología , Médula Ósea/metabolismo , Médula Ósea/patología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Mutación , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Animales , Hematopoyesis/genética
2.
PLoS Biol ; 22(2): e3002517, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38422172

RESUMEN

A subpopulation of deeply quiescent, so-called dormant hematopoietic stem cells (dHSCs) resides at the top of the hematopoietic hierarchy and serves as a reserve pool for HSCs. The state of dormancy protects the HSC pool from exhaustion throughout life; however, excessive dormancy may prevent an efficient response to hematological stresses. Despite the significance of dHSCs, the mechanisms maintaining their dormancy remain elusive. Here, we identify CD38 as a novel and broadly applicable surface marker for the enrichment of murine dHSCs. We demonstrate that cyclic adenosine diphosphate ribose (cADPR), the product of CD38 cyclase activity, regulates the expression of the transcription factor c-Fos by increasing the release of Ca2+ from the endoplasmic reticulum (ER). Subsequently, we uncover that c-Fos induces the expression of the cell cycle inhibitor p57Kip2 to drive HSC dormancy. Moreover, we found that CD38 ecto-enzymatic activity at the neighboring CD38-positive cells can promote human HSC quiescence. Together, CD38/cADPR/Ca2+/c-Fos/p57Kip2 axis maintains HSC dormancy. Pharmacological manipulations of this pathway can provide new strategies to improve the success of stem cell transplantation and blood regeneration after injury or disease.


Asunto(s)
ADP-Ribosil Ciclasa 1 , ADP-Ribosa Cíclica , Animales , Humanos , Ratones , Calcio/metabolismo , ADP-Ribosa Cíclica/metabolismo , Células Madre Hematopoyéticas , ADP-Ribosil Ciclasa 1/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo
3.
Cancer Immunol Immunother ; 73(1): 8, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231344

RESUMEN

Bone marrow mesenchymal stromal cells (MSCs) have been described as potent regulators of T-cell function, though whether they could impede the effectiveness of immunotherapy against acute myeloid leukemia (AML) is still under investigation. We examine whether they could interfere with the activity of leukemia-specific clonal cytotoxic T-lymphocytes (CTLs) and chimeric antigen receptor (CAR) T cells, as well as whether the immunomodulatory properties of MSCs could be associated with the induction of T-cell senescence. Co-cultures of leukemia-associated Wilm's tumor protein 1 (WT1) and tyrosine-protein kinase transmembrane receptor 1 (ROR1)-reactive CTLs and of CD123-redirected switchable CAR T cells were prepared in the presence of MSCs and assessed for cytotoxic potential, cytokine secretion, and expansion. T-cell senescence within functional memory sub-compartments was investigated for the senescence-associated phenotype CD28-CD57+ using unmodified peripheral blood mononuclear cells. We describe inhibition of expansion of AML-redirected switchable CAR T cells by MSCs via indoleamine 2,3-dioxygenase 1 (IDO-1) activity, as well as reduction of interferon gamma (IFNγ) and interleukin-2 (IL-2) release. In addition, MSCs interfered with the secretory potential of leukemia-associated WT1- and ROR1-targeting CTL clones, inhibiting the release of IFNγ, tumor necrosis factor alpha, and IL-2. Abrogated T cells were shown to retain their cytolytic activity. Moreover, we demonstrate induction of a CD28loCD27loCD57+KLRG1+ senescent T-cell phenotype by MSCs. In summary, we show that MSCs are potent modulators of anti-leukemic T cells, and targeting their modes of action would likely be beneficial in a combinatorial approach with AML-directed immunotherapy.


Asunto(s)
Leucemia Mieloide Aguda , Células Madre Mesenquimatosas , Humanos , Médula Ósea , Interleucina-2 , Antígenos CD28 , Leucocitos Mononucleares , Leucemia Mieloide Aguda/terapia , Linfocitos T Citotóxicos , Células Clonales
4.
Int J Cancer ; 154(6): 1057-1072, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38078628

RESUMEN

About 25% of melanoma harbor activating NRAS mutations, which are associated with aggressive disease therefore requiring a rapid antitumor intervention. However, no efficient targeted therapy options are currently available for patients with NRAS-mutant melanoma. MEK inhibitors (MEKi) appear to display a moderate antitumor activity and also immunological effects in NRAS-mutant melanoma, providing an ideal backbone for combination treatments. In our study, the MEKi binimetinib, cobimetinib and trametinib combined with the BRAF inhibitors (BRAFi) encorafenib, vemurafenib and dabrafenib were investigated for their ability to inhibit proliferation, induce apoptosis and alter the expression of immune modulatory molecules in sensitive NRAS-mutant melanoma cells using two- and three-dimensional cell culture models as well as RNA sequencing analyses. Furthermore, NRAS-mutant melanoma cells resistant to the three BRAFi/MEKi combinations were established to characterize the mechanisms contributing to their resistance. All BRAFi induced a stress response in the sensitive NRAS-mutant melanoma cells thereby significantly enhancing the antiproliferative and proapoptotic activity of the MEKi analyzed. Furthermore, BRAFi/MEKi combinations upregulated immune relevant molecules, such as ICOS-L, components of antigen-presenting machinery and the "don't eat me signal" molecule CD47 in the melanoma cells. The BRAFi/MEKi-resistant, NRAS-mutant melanoma cells counteracted the molecular and immunological effects of BRAFi/MEKi by upregulating downstream mitogen-activated protein kinase pathway molecules, inhibiting apoptosis and promoting immune escape mechanisms. Together, our study reveals potent molecular and immunological effects of BRAFi/MEKi in sensitive NRAS-mutant melanoma cells that may be exploited in new combinational treatment strategies for patients with NRAS-mutant melanoma.


Asunto(s)
Melanoma , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Proteínas Proto-Oncogénicas B-raf , Vemurafenib , Inhibidores de Proteínas Quinasas/efectos adversos , Quinasas de Proteína Quinasa Activadas por Mitógenos , Mutación , Resistencia a Antineoplásicos/genética , Proteínas de la Membrana/genética , GTP Fosfohidrolasas/genética
5.
Front Immunol ; 14: 1185197, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37261361

RESUMEN

Soft tissue sarcomas (STS) form a heterogeneous group of tumors sharing a mesenchymal origin. Despite good local control of the disease, the occurrence of distant metastases often limits survival of STS patients with localized, high-risk tumors of the extremities. Accumulating evidence suggests a central role for the tumor immune microenvironment in determining the clinical outcome and response to therapy. Thus, it has been reported that STS patients with a high immune signature and especially presence of B cells and tertiary lymphoid structures display improved overall survival and response to checkpoint inhibitor treatment. Here, we explored the effect of curative multimodal therapy on the T cell landscape of STS using multiplex immunohistochemistry. We analyzed the phenotype, frequency, and spatial distribution of STS-infiltrating CD8+ T cells by staining for CD8, 4-1BB, Granzyme B, Ki67, PD-1, and LAG-3 as well as CD3+ T helper cells using a panel consisting of CD3, T-bet, GATA3, RORγT, FoxP3, and Ki67. All patients received neoadjuvant radiotherapy plus locoregional hyperthermia with or without chemotherapy. While the treatment-naïve biopsy sample allows an analysis of baseline T cell infiltration levels, both intra- and peritumoral areas of the matched resected tissue were analyzed to assess composition and spatial distribution of the T cell compartment and its therapeutic modulation. Generally, post-treatment tissues displayed lower frequencies of CD3+ and CD8+ T cells. Association with clinical data revealed that higher post-treatment frequencies of peritumoral and intratumoral CD3+ T cells and intratumoral PD-1+ CD8+ T cells were significantly associated with improved disease-free survival (DFS), while these densities had no prognostic significance in the biopsy. Upon spatial analysis, a high ratio of intratumoral to peritumoral CD8+ T cells emerged as an independent prognostic marker for longer DFS. These results indicate that the STS T cell landscape is altered by multimodal therapy and may influence the clinical outcome of patients. An enhanced understanding of the STS immune architecture and its modulation by neoadjuvant therapy may pave the way towards novel treatment modalities and improve the long-term clinical outcome of STS patients.


Asunto(s)
Hipertermia Inducida , Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Terapia Neoadyuvante , Linfocitos T CD8-positivos , Receptor de Muerte Celular Programada 1 , Antígeno Ki-67 , Sarcoma/patología , Neoplasias de los Tejidos Blandos/patología , Microambiente Tumoral
6.
Front Pharmacol ; 14: 970457, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817127

RESUMEN

The cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor palbociclib is an emerging cancer therapeutic that just recently gained Food and Drug Administration approval for treatment of estrogen receptor (ER)-positive, human epidermal growth factor receptor (Her)2-negative breast cancer in combination with the ER degrader fulvestrant. However, CDK4/6 inhibitors are not cancer-specific and may affect also other proliferating cells. Given the importance of T cells in antitumor defense, we studied the influence of palbociclib/fulvestrant on human CD3+ T cells and novel emerging T cell-based cancer immunotherapies. Palbociclib considerably inhibited the proliferation of activated T cells by mediating G0/G1 cell cycle arrest. However, after stopping the drug supply this suppression was fully reversible. In light of combination approaches, we further investigated the effect of palbociclib/fulvestrant on T cell-based immunotherapies by using a CD3-PSCA bispecific antibody or universal chimeric antigen receptor (UniCAR) T cells. Thereby, we observed that palbociclib clearly impaired T cell expansion. This effect resulted in a lower total concentration of interferon-γ and tumor necrosis factor, while palbociclib did not inhibit the average cytokine release per cell. In addition, the cytotoxic potential of the redirected T cells was unaffected by palbociclib and fulvestrant. Overall, these novel findings may have implications for the design of treatment modalities combining CDK4/6 inhibition and T cell-based cancer immunotherapeutic strategies.

7.
Ther Apher Dial ; 26 Suppl 1: 18-28, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36468334

RESUMEN

BACKGROUND: Atherosclerosis is considered a chronic inflammation of arterial vessels with the involvement of several immune cells causing severe cardiovascular diseases. Lipoprotein apheresis (LA) improves cardiovascular conditions of patients with severely disturbed lipid metabolism. In this context, little is known about the impact of LA on various immune cell populations, especially over time. METHODS: Immune cells of 18 LA-naïve patients starting weekly LA treatment were analyzed before and after four apheresis cycles over the course of 24 weeks by flow cytometry. RESULTS AND CONCLUSIONS: An acute lowering effect of LA on T cell and natural killer (NK) cell subpopulations expressing CD69 was observed. The non-classical and intermediate monocyte subsets as well as HLA-DR+ 6-sulfo LacNAc+ monocytes were significantly reduced during the apheresis procedure. We conclude that LA has the capacity to alter various immune cell subsets. However, LA has mainly short-term effects than long-term consequences on proportions of immune cells.


Asunto(s)
Eliminación de Componentes Sanguíneos , Enfermedades Cardiovasculares , Humanos , Biomarcadores , Lipoproteínas , Enfermedades Cardiovasculares/etiología , Monocitos , Eliminación de Componentes Sanguíneos/métodos , Resultado del Tratamiento
8.
Front Immunol ; 13: 1005554, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311725

RESUMEN

Functional impairment of the bone marrow (BM) niche has been suggested as a major reason for prolonged cytopenia and secondary graft failure after allogeneic hematopoietic cell transplantation (alloHCT). Because mesenchymal stromal cells (MSCs) serve as multipotent progenitors for several niche components in the BM, they might play a key role in this process. We used collagenase digested trephine biopsies to directly quantify MSCs in 73 patients before (n = 18) and/or after alloHCT (n = 65). For the first time, we demonstrate that acute graft-versus-host disease (aGvHD, n = 39) is associated with a significant decrease in MSC numbers. MSC reduction can be observed even before the clinical onset of aGvHD (n = 10). Assessing MSCs instantly after biopsy collection revealed phenotypic and functional differences depending on the occurrence of aGvHD. These differences vanished during ex vivo expansion. The MSC endotypes observed revealed an enhanced population of donor-derived classical dendritic cells type 1 and alloreactive T cells as the causing agent for compartmental inflammation and MSC damage before clinical onset of aGvHD was ascertained. In conclusion, MSCs endotypes may constitute a predisposing conductor of alloreactivity after alloHCT preceding the clinical diagnosis of aGvHD.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Enfermedad Injerto contra Huésped/diagnóstico , Médula Ósea/patología , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Células Madre Mesenquimatosas/metabolismo
9.
Immunity ; 55(4): 701-717.e7, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35364006

RESUMEN

Bacterial sensing by intestinal tumor cells contributes to tumor growth through cell-intrinsic activation of the calcineurin-NFAT axis, but the role of this pathway in other intestinal cells remains unclear. Here, we found that myeloid-specific deletion of calcineurin in mice activated protective CD8+ T cell responses and inhibited colorectal cancer (CRC) growth. Microbial sensing by myeloid cells promoted calcineurin- and NFAT-dependent interleukin 6 (IL-6) release, expression of the co-inhibitory molecules B7H3 and B7H4 by tumor cells, and inhibition of CD8+ T cell-dependent anti-tumor immunity. Accordingly, targeting members of this pathway activated protective CD8+ T cell responses and inhibited primary and metastatic CRC growth. B7H3 and B7H4 were expressed by the majority of human primary CRCs and metastases, which was associated with low numbers of tumor-infiltrating CD8+ T cells and poor survival. Therefore, a microbiota-, calcineurin-, and B7H3/B7H4-dependent pathway controls anti-tumor immunity, revealing additional targets for immune checkpoint inhibition in microsatellite-stable CRC.


Asunto(s)
Neoplasias Colorrectales , Microbiota , Animales , Antígenos B7 , Linfocitos T CD8-positivos , Calcineurina/metabolismo , Neoplasias Colorrectales/metabolismo , Ratones , Factores de Transcripción NFATC/metabolismo , Inhibidor 1 de la Activación de Células T con Dominio V-Set
10.
Nat Commun ; 13(1): 1880, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35388002

RESUMEN

Sensing of pathogens by pattern recognition receptors (PRR) is critical to initiate protective host defence reactions. However, activation of the immune system has to be carefully titrated to avoid tissue damage necessitating mechanisms to control and terminate PRR signalling. Dectin-1 is a PRR for fungal ß-glucans on immune cells that is rapidly internalised after ligand-binding. Here, we demonstrate that pathogen recognition by the Dectin-1a isoform results in the formation of a stable receptor fragment devoid of the ligand binding domain. This fragment persists in phagosomal membranes and contributes to signal transduction which is terminated by the intramembrane proteases Signal Peptide Peptidase-like (SPPL) 2a and 2b. Consequently, immune cells lacking SPPL2b demonstrate increased anti-fungal ROS production, killing capacity and cytokine responses. The identified mechanism allows to uncouple the PRR signalling response from delivery of the pathogen to degradative compartments and identifies intramembrane proteases as part of a regulatory circuit to control anti-fungal immune responses.


Asunto(s)
Lectinas Tipo C , Transducción de Señal , Lectinas Tipo C/metabolismo , Ligandos , Proteolisis , Receptores de Reconocimiento de Patrones/metabolismo
11.
Cancers (Basel) ; 14(5)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35267524

RESUMEN

Dendritic cells (DCs) play a key role in the orchestration of antitumor immunity. Activated DCs efficiently enhance antitumor effects mediated by natural killer cells and T lymphocytes. Conversely, tolerogenic DCs essentially contribute to an immunosuppressive tumor microenvironment. Thus, DCs can profoundly influence tumor progression and clinical outcome of tumor patients. To gain novel insights into the role of human DCs in pancreatic ductal adenocarcinoma (PDAC), we explored the frequency, spatial organization, and clinical significance of conventional DCs type 1 (cDC1s) and type 2 (cDC2s) and plasmacytoid DCs (pDCs) in primary PDAC tissues. A higher density of whole tumor area (WTA)- and tumor stroma (TS)-infiltrating cDC1s was significantly associated with better disease-free survival (DFS). In addition, an increased frequency of intraepithelial tumor-infiltrating cDC2s was linked to better DFS and overall survival (OS). Furthermore, an increased density of WTA- and TS-infiltrating pDCs tended to improve DFS. Moreover, a higher frequency of WTA- and TS-infiltrating cDC1s and pDCs emerged as an independent prognostic factor for better DFS and OS. These findings indicate that tumor-infiltrating DCs can significantly influence the clinical outcome of PDAC patients and may contribute to the design of novel treatment options that target PDAC-infiltrating DCs.

12.
Eur J Immunol ; 52(11): 1750-1758, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35106759

RESUMEN

DCs play a pivotal role in orchestrating innate and adaptive antitumor immunity. Activated DCs can produce large amounts of various proinflammatory cytokines, initiate T-cell responses, and exhibit direct cytotoxicity against tumor cells. They also efficiently enhance the antitumoral properties of NK cells and T lymphocytes. Based on these capabilities, immunogenic DCs promote tumor elimination and are associated with improved survival of patients. Furthermore, they can essentially contribute to the clinical efficacy of immunotherapeutic strategies for cancer patients. However, depending on their intrinsic properties and the tumor microenvironment, DCs can be rendered dysfunctional and mediate tolerance by producing immunosuppressive cytokines and activating Treg cells. Such tolerogenic DCs can foster tumor progression and are linked to poor prognosis of patients. Here, we focus on recent studies exploring the phenotype, functional orientation, and clinical relevance of tumor-infiltrating conventional DC1, conventional DC2, plasmacytoid DCs, and monocyte-derived DCs in translational and clinical settings. In addition, recent findings demonstrating the influence of DCs on the efficacy of immunotherapeutic strategies are summarized.


Asunto(s)
Células Dendríticas , Neoplasias , Humanos , Neoplasias/terapia , Células Asesinas Naturales , Citocinas , Fenotipo , Microambiente Tumoral
13.
J Immunother Cancer ; 9(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33762320

RESUMEN

BACKGROUND: Plasmacytoid dendritic cells (pDCs) play a key role in the induction and maintenance of antitumor immunity. Conversely, they can act as tolerogenic DCs by inhibiting tumor-directed immune responses. Therefore, pDCs may profoundly influence tumor progression. To gain novel insights into the role of pDCs in colon cancer, we investigated the frequency and clinical relevance of pDCs in primary tumor tissues from patients with colon cancer with different clinicopathological characteristics. METHODS: Immunohistochemical stainings were performed to explore the frequency of tumor-infiltrating BDCA-2+ pDCs in patients with colon cancer. Statistical analyses were conducted to determine an association between the pDC density and clinicopathological characteristics of the patients. Furthermore, we used multiplex immunofluorescence stainings to evaluate the localization and phenotype of pDCs in stroma and tertiary lymphoid structures (TLS) of colon cancer tissues. RESULTS: An increased density of infiltrating pDCs was associated with lower Union for International Cancer Control (UICC) stages. Furthermore, a higher pDC frequency was significantly correlated with increased progression-free and overall survival of patients with colon cancer. Moreover, a lower number of coloncancer-infiltrating pDCs was significantly and independently linked to worse prognosis. In addition, we found that a proportion of pDCs shows a nuclear expression of the transcription factor interferon regulatory factor 7 (IRF7), which is characteristic for an activated phenotype. In various tumor stroma regions, IRF7+ pDCs were located in the neighborhood of granzyme B-expressing CD8+ T cells. Moreover, pDCs were identified as a novel component of the T cell zone of colon cancer-associated TLS, which are major regulators of adaptive antitumor immunity. A proportion of TLS-associated pDCs displayed a nuclear IRF7 expression and was preferentially located close to CD4+ T cells. CONCLUSIONS: These results indicate that higher densities of tumor-infiltrating pDCs are associated with prolonged survival of patients with colon cancer. Moreover, colon cancer-infiltrating pDCs may represent a novel prognostic factor. The colocalization of activated pDCs and T cells in tumor stroma and within TLS may contribute to the correlation between higher pDC densities and better prognosis. In addition, our findings may have implications for the design of novel immunotherapeutic strategies that are based on targeting colon cancer-infiltrating pDCs.


Asunto(s)
Neoplasias del Colon/inmunología , Células Dendríticas/inmunología , Microambiente Tumoral/inmunología , Biomarcadores de Tumor/análisis , Linfocitos T CD4-Positivos/inmunología , Neoplasias del Colon/mortalidad , Neoplasias del Colon/patología , Neoplasias del Colon/terapia , Progresión de la Enfermedad , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Factor 7 Regulador del Interferón/análisis , Lectinas Tipo C/análisis , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Glicoproteínas de Membrana/análisis , Estadificación de Neoplasias , Fenotipo , Valor Predictivo de las Pruebas , Supervivencia sin Progresión , Receptores Inmunológicos/análisis , Estudios Retrospectivos , Estructuras Linfoides Terciarias/inmunología
14.
Front Cell Dev Biol ; 9: 637725, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33634139

RESUMEN

Mesenchymal stromal cells (MSCs) are characterized by an extraordinary capacity to modulate the phenotype and functional properties of various immune cells that play an essential role in the pathogenesis of inflammatory disorders. Thus, MSCs efficiently impair the phagocytic and antigen-presenting capacity of monocytes/macrophages and promote the expression of immunosuppressive molecules such as interleukin (IL)-10 and programmed cell death 1 ligand 1 by these cells. They also effectively inhibit the maturation of dendritic cells and their ability to produce proinflammatory cytokines and to stimulate potent T-cell responses. Furthermore, MSCs inhibit the generation and proinflammatory properties of CD4+ T helper (Th)1 and Th17 cells, while they promote the proliferation of regulatory T cells and their inhibitory capabilities. MSCs also impair the expansion, cytokine secretion, and cytotoxic activity of proinflammatory CD8+ T cells. Moreover, MSCs inhibit the differentiation, proliferation, and antibody secretion of B cells, and foster the generation of IL-10-producing regulatory B cells. Various cell membrane-associated and soluble molecules essentially contribute to these MSC-mediated effects on important cellular components of innate and adaptive immunity. Due to their immunosuppressive properties, MSCs have emerged as promising tools for the treatment of inflammatory disorders such as acute graft-versus-host disease, graft rejection in patients undergoing organ/cell transplantation, and autoimmune diseases.

15.
Cancers (Basel) ; 12(10)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987956

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a mostly immunosuppressive microenvironment. Tumor-draining lymph nodes (TDLN) are a major site for priming of tumor-reactive T cells and also tumor metastasis. However, the phenotype and function of T cells in TDLNs from PDAC patients is unknown. In this study, lymph nodes from the pancreatic head (PH), the hepatoduodenal ligament (HDL) and the interaortocaval (IAC) region were obtained from 25 patients with adenocarcinoma of the pancreatic head. Additionally, tumors and matched blood were analyzed from 16 PDAC patients. Using multicolor flow cytometry, we performed a comprehensive analysis of T cells. CD4+ T cells were the predominant T cell subset in PDAC-draining lymph nodes. Overall, lymph node CD4+ and CD8+ T cells had a similar degree of activation, as measured by CD69, inducible T cell co-stimulator (ICOS) and CD137 (4-1BB) expression and interferon-γ (IFNγ) secretion. Expression of the inhibitory receptor programmed death 1 (PD-1) by lymph node and tumor-infiltrating regulatory T cells (Tregs) correlated with lymph node metastasis. Collectively, Treg cells and PD-1 are two relevant components of the immunosuppressive network in PDAC-draining lymph nodes and may be particularly attractive targets for combinatorial immunotherapeutic strategies in selected patients with node-positive PDAC.

16.
Front Immunol ; 11: 140, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117287

RESUMEN

Cancer stem cells (CSCs), also known as tumor-initiating cells, are characterized by an increased capacity for self-renewal, multipotency, and tumor initiation. While CSCs represent only a small proportion of the tumor mass, they significantly account for metastatic dissemination and tumor recurrence, thus making them attractive targets for therapy. Due to their ability to sustain in dormancy, chemo- and radiotherapy often fail to eliminate cancer cells with stemness properties. Recent advances in the understanding of the tumor microenvironment (TME) illustrated the importance of the immune contexture, determining the response to therapy and clinical outcome of patients. In this context, CSCs exhibit special properties to escape the recognition by innate and adaptive immunity and shape the TME into an immunosuppressive, pro-tumorigenic landscape. As CSCs sculpt the immune contexture, the phenotype and functional properties of the tumor-infiltrating immune cells in turn influence the differentiation and phenotype of tumor cells. In this review, we summarize recent studies investigating main immunomodulatory properties of CSCs and their underlying molecular mechanisms as well as the impact of immune cells on cancer cells with stemness properties. A deeper understanding of this bidirectional crosstalk shaping the immunological landscape and determining therapeutic responses will facilitate the improvement of current treatment modalities and the design of innovative strategies to precisely target CSCs.


Asunto(s)
Comunicación Celular/inmunología , Macrófagos/inmunología , Células Supresoras de Origen Mieloide/inmunología , Células Madre Neoplásicas/inmunología , Linfocitos T/inmunología , Microambiente Tumoral/inmunología , Desdiferenciación Celular/inmunología , Humanos , Inmunomodulación , Inmunoterapia/métodos , Fenotipo , Escape del Tumor
17.
Front Immunol ; 11: 364, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194568

RESUMEN

The tumor immune contexture plays a major role for the clinical outcome of patients. High densities of CD45RO+ T helper 1 cells and CD8+ T cells are associated with improved survival of patients with various cancer entities. In contrast, a higher frequency of tumor-infiltrating M2 macrophages is correlated with poor prognosis. Recent studies provide evidence that the tumor immune architecture also essentially contributes to the clinical efficacy of immune checkpoint inhibitor (CPI) therapy in patients. Pretreatment melanoma samples from patients who experienced a clinical response to anti-programmed cell death protein 1 (PD-1) treatment show higher densities of infiltrating CD8+ T cells compared to samples from patients that progressed during therapy. Anti-PD-1 therapy results in an increased density of tumor-infiltrating T lymphocytes in treatment responders. In addition, elevated frequencies of melanoma-infiltrating TCF7+CD8+ T cells are correlated with beneficial clinical outcome of anti-PD-1-treated patients. In contrast, a high density of tumor-infiltrating, dysfunctional PD-1+CD38hi CD8+ cells in melanoma patients is associated with anti-PD-1 resistance. Such findings indicate that comprehensive tumor immune contexture profiling prior to and during CPI therapy may lead to the identification of underlying mechanisms for treatment response or resistance, and the design of improved immunotherapeutic strategies. Here, we focus on studies exploring the impact of intratumoral T and B cells at baseline on the clinical outcome of CPI-treated cancer patients. In addition, recent findings demonstrating the influence of CPIs on tumor-infiltrating lymphocytes are summarized.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias/tratamiento farmacológico , Linfocitos B/inmunología , Humanos , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Neoplasias/inmunología , Linfocitos T/inmunología
18.
Cytotherapy ; 22(1): 21-26, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31883948

RESUMEN

Isolation of mesenchymal stromal cells (MSCs) from pretreated, hematologic patients is challenging. Especially after allogeneic hematopoietic cell transplantation (HCT), standard protocols using bone marrow aspirates fail to reliably recover sufficient cell numbers. Because MSCs are considered to contribute to processes that mainly affect the outcome after transplantation, such as an efficient lymphohematopoietic recovery, extent of graft-versus-host disease as well as the occurrence of leukemic relapse, it is of great clinical relevance to investigate MSC function in this context. Previous studies showed that MSCs can be isolated by collagenase digestion of large bone fragments of hematologically healthy patients undergoing hip replacement or knee surgeries. We have now further developed this procedure for the isolation of MSCs from hematologic patients after allogeneic HCT by using trephine biopsy specimens obtained during routine examinations. Comparison of aspirates and trephine biopsy specimens from patients after allogeneic HCT revealed a significantly higher frequency of clonogenic MSCs (colony-forming unit-fibroblast [CFU-F]) in trephine biopsy specimens (mean, 289.8 ± standard deviation 322.5 CFU-F colonies/1 × 106 total nucleated cells versus 4.2 ± 9.9; P < 0.0001). Subsequent expansion of functional MSCs isolated from trephine biopsy specimen was more robust and led to a significantly higher yield compared with control samples expanded from aspirates (median, 1.6 × 106; range, 0-2.3 × 107 P0 MSCs versus 5.4 × 104; range, 0-8.9 × 106; P < 0.0001). Using trephine biopsy specimens as MSC source facilitates the investigation of various clinical questions.


Asunto(s)
Células de la Médula Ósea/citología , Trasplante de Células Madre Hematopoyéticas/métodos , Leucemia/terapia , Células Madre Mesenquimatosas/citología , Adulto , Anciano , Biopsia , Médula Ósea , Colagenasas/farmacología , Femenino , Enfermedad Injerto contra Huésped/patología , Humanos , Masculino , Persona de Mediana Edad , Células Tumorales Cultivadas , Adulto Joven
19.
J Immunother Cancer ; 7(1): 307, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31730025

RESUMEN

BACKGROUND: We previously showed that the bacterial lipopeptide Pam3Cys-Ser-Ser, meanwhile established as a toll-like receptor (TLR) 1/2 ligand, acts as a strong adjuvant for the induction of virus specific CD8+ T cells in mice, when covalently coupled to a synthetic peptide. CASE PRESENTATION: We now designed a new water-soluble synthetic Pam3Cys-derivative, named XS15 and characterized it in vitro by a TLR2 NF-κB luciferase reporter assay. Further, the capacity of XS15 to activate immune cells and stimulate peptide-specific CD8+ T and NK cells by 6-sulfo LacNAc+ monocytes was assessed by flow cytometry as well as cytokine induction using immunoassays. The induction of a functional immune response after vaccination of a volunteer with viral peptides was assessed by ELISpot assay and flow cytometry in peripheral blood cells and infiltrating cells at the vaccination site, as well as by immunohistochemistry and imaging. XS15 induced strong ex vivo CD8+ and TH1 CD4+ responses in a human volunteer upon a single injection of XS15 mixed to uncoupled peptides in a water-in-oil emulsion (Montanide™ ISA51 VG). A granuloma formed locally at the injection site containing highly activated functional CD4+ and CD8+ effector memory T cells. The total number of vaccine peptide-specific functional T cells was experimentally assessed and estimated to be 3.0 × 105 in the granuloma and 20.5 × 106 in peripheral blood. CONCLUSION: Thus, in one volunteer we show a granuloma forming by peptides combined with an efficient adjuvant in a water-in-oil-emulsion, inducing antigen specific T cells detectable in circulation and at the vaccination site, after one single vaccination only. The ex vivo T cell responses in peripheral blood were detectable for more than one year and could be strongly boosted by a second vaccination. Hence, XS15 is a promising adjuvant candidate for peptide vaccination, in particular for tumor peptide vaccines in a personalized setting.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Péptidos/uso terapéutico , Receptor Toll-Like 1/inmunología , Receptor Toll-Like 2/inmunología , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Granuloma/inmunología , Células HEK293 , Voluntarios Sanos , Humanos , Células Asesinas Naturales/inmunología , Ligandos , Masculino , Persona de Mediana Edad , Vacunación
20.
J Clin Med ; 8(10)2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31557787

RESUMEN

The administration of antibodies blocking the immune checkpoint molecules programmed cell death protein 1 (PD-1) or programmed cell death 1 ligand 1 (PD-L1) has evolved as a very promising treatment option for cancer patients. PD-1/PD-L1 inhibition has significantly enhanced expansion, cytokine secretion, and cytotoxic activity of CD4+ and CD8+ T lymphocytes, resulting in enhanced antitumor responses. Anti-PD-1 or anti-PD-L1 therapy has induced tumor regression and improved clinical outcome in patients with different tumor entities, including melanoma, non-small-cell lung cancer, and renal cell carcinoma. These findings led to the approval of various anti-PD-1 or anti-PD-L1 antibodies for the treatment of tumor patients. However, the majority of patients have failed to respond to this treatment modality. Comprehensive immune monitoring of clinical trials led to the identification of potential biomarkers distinguishing between responders and non-responders, the discovery of modes of treatment resistance, and the design of improved immunotherapeutic strategies. In this review article, we summarize the evolving landscape of biomarkers for anti-PD-1 or anti-PD-L1 therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...