Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 22(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39057420

RESUMEN

Dinoflagellate species that form some of the most frequent toxic blooms are also bioluminescent, yet the two traits are rarely linked when studying bloom development and persistence. P. bahamense is a toxic, bioluminescent dinoflagellate that previously bloomed in Florida with no known record of saxitoxin (STX) production. Over the past 20 years, STX was identified in P. bahamense populations. The goal of this study was to examine toxin dynamics and associated molecular mechanisms in spatially and temporally distinct P. bahamense populations from the Indian River Lagoon, FL. SxtA4 is a key gene required for toxin biosynthesis. SxtA4 genotype analysis was performed on individual cells from multiple sites. Cell abundance, toxin quota cell-1, and sxtA4 and RubisCo (rbcL) transcript abundance were also measured. There was a significant negative correlation between cell abundance and toxin quota cell-1. While the sxtA4+ genotype was dominant at all sites, its frequency varied, but it occurred at 90-100% in many samples. The underlying mechanism for toxin decrease with increased cell abundance remains unknown. However, a strong, statistically significant negative correlation was found between stxA4 transcripts and the sxtA4/rbcL ratio, suggesting cells make fewer sxtA4 transcripts as a bloom progresses. However, the influence of sxtA4- cells must also be considered. Future plans include bioluminescence measurements, normalized to a per cell basis, at sites when toxicity is measured along with concomitant quantification of sxtA4 gene and transcript copy numbers as a means to elucidate whether changes in bloom toxicity are driven more at the genetic (emergence of sxtA4- cells) or transcriptional (repression of sxtA4 in sxtA4+ cells) level. Based on the results of this study, a model is proposed that links the combined traits of toxicity and bioluminescence in P. bahamense bloom development.


Asunto(s)
Dinoflagelados , Dinoflagelados/genética , Dinoflagelados/metabolismo , Florida , Toxinas Marinas/genética , Ríos , Genotipo , Floraciones de Algas Nocivas
2.
Harmful Algae ; 129: 102531, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951605

RESUMEN

For Microcystis aeruginosa PCC 7806, temperature decreases from 26 °C to 19 °C double the microcystin quota per cell during growth in continuous culture. Here we tested whether this increase in microcystin provided M. aeruginosa PCC 7806 with a fitness advantage during colder-temperature growth by comparing cell concentration, cellular physiology, reactive oxygen species damage, and the transcriptomics-inferred metabolism to a non-toxigenic mutant strain M. aeruginosa PCC 7806 ΔmcyB. Photo-physiological data combined with transcriptomic data revealed metabolic changes in the mutant strain during growth at 19 °C, which included increased electron sinks and non-photochemical quenching. Increased gene expression was observed for a glutathione-dependent peroxiredoxin during cold treatment, suggesting compensatory mechanisms to defend against reactive oxygen species are employed in the absence of microcystin in the mutant. Our observations highlight the potential selective advantages of a longer-term defensive strategy in management of oxidative stress (i.e., making microcystin) vs the shorter-term proactive strategy of producing cellular components to actively dissipate or degrade oxidative stress agents.


Asunto(s)
Microcistinas , Microcystis , Microcistinas/metabolismo , Frío , Especies Reactivas de Oxígeno/metabolismo , Aclimatación
3.
bioRxiv ; 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37693631

RESUMEN

For Microcystis aeruginosa PCC 7806, temperature decreases from 26° C to 19° C double the microcystin quota per cell during growth in continuous culture. Here we tested whether this increase in microcystin provided M. aeruginosa PCC 7806 with a fitness advantage during colder-temperature growth by comparing cell concentration, cellular physiology, and the transcriptomics-inferred metabolism to a non-toxigenic mutant strain M. aeruginosa PCC 7806 ΔmcyB. Photo-physiological data combined with transcriptomic data revealed metabolic changes in the mutant strain during growth at 19° C, which included increased electron sinks and non-photochemical quenching. Increased gene expression was observed for a glutathione-dependent peroxiredoxin during cold treatment, suggesting compensatory mechanisms to defend against reactive oxygen species are employed in the absence of microcystin in the mutant. Our observations highlight the potential selective advantages of a longer-term defensive strategy in management of oxidative stress (i.e., making microcystin) vs the shorter-term proactive strategy of producing cellular components to actively dissipate or degrade oxidative stress agents.

4.
BMC Genomics ; 22(1): 374, 2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34022797

RESUMEN

BACKGROUND: 20-hydroxyecdysone (20E) plays important roles in insect molting and metamorphosis. 20E-induced autophagy has been detected during the larval-pupal transition in different insects. In Bombyx mori, autophagy is induced by 20E in the larval fat body. Long non-coding RNAs (lncRNAs) function in various biological processes in many organisms, including insects. Many lncRNAs have been reported to be potential for autophagy occurrence in mammals, but it has not been investigated in insects. RESULTS: RNA libraries from the fat body of B. mori dissected at 2 and 6 h post-injection with 20E were constructed and sequenced, and comprehensive analysis of lncRNAs and mRNAs was performed. A total of 1035 lncRNAs were identified, including 905 lincRNAs and 130 antisense lncRNAs. Compared with mRNAs, lncRNAs had longer transcript length and fewer exons. 132 lncRNAs were found differentially expressed at 2 h post injection, compared with 64 lncRNAs at 6 h post injection. Thirty differentially expressed lncRNAs were common at 2 and 6 h post-injection, and were hypothesized to be associated with the 20E response. Target gene analysis predicted 6493 lncRNA-mRNA cis pairs and 42,797 lncRNA-mRNA trans pairs. The expression profiles of LNC_000560 were highly consistent with its potential target genes, Atg4B, and RNAi of LNC_000560 significantly decreased the expression of LNC_000560 and Atg4B. These results indicated that LNC_000560 was potentially involved in the 20E-induced autophagy of the fat body by regulating Atg4B. CONCLUSIONS: This study provides the genome-wide identification and functional characterization of lncRNAs associated with 20E-induced autophagy in the fat body of B. mori. LNC_000560 and its potential target gene were identified to be related to 20-regulated autophagy in B. mori. These results will be helpful for further studying the regulatory mechanisms of lncRNAs in autophagy and other biological processes in this insect model.


Asunto(s)
Bombyx , ARN Largo no Codificante , Animales , Autofagia/genética , Bombyx/genética , Ecdisterona , Perfilación de la Expresión Génica , Proteínas de Insectos/genética , ARN Largo no Codificante/genética
5.
Toxins (Basel) ; 13(1)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435505

RESUMEN

Cyanobacterial harmful algal bloom (CyanoHAB) proliferation is a global problem impacting ecosystem and human health. Western Lake Erie (WLE) typically endures two highly toxic CyanoHABs during summer: a Microcystis spp. bloom in Maumee Bay that extends throughout the western basin, and a Planktothrix spp. bloom in Sandusky Bay. Recently, the USA and Canada agreed to a 40% phosphorus (P) load reduction to lessen the severity of the WLE blooms. To investigate phosphorus and nitrogen (N) limitation of biomass and toxin production in WLE CyanoHABs, we conducted in situ nutrient addition and 40% dilution microcosm bioassays in June and August 2019. During the June Sandusky Bay bloom, biomass production as well as hepatotoxic microcystin and neurotoxic anatoxin production were N and P co-limited with microcystin production becoming nutrient deplete under 40% dilution. During August, the Maumee Bay bloom produced microcystin under nutrient repletion with slight induced P limitation under 40% dilution, and the Sandusky Bay bloom produced anatoxin under N limitation in both dilution treatments. The results demonstrate the importance of nutrient limitation effects on microcystin and anatoxin production. To properly combat cyanotoxin and cyanobacterial biomass production in WLE, both N and P reduction efforts should be implemented in its watershed.


Asunto(s)
Toxinas Bacterianas/toxicidad , Cianobacterias/fisiología , Floraciones de Algas Nocivas , Lagos/microbiología , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Clorofila A/química , Great Lakes Region , Lagos/química
6.
Front Microbiol ; 11: 601864, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343544

RESUMEN

Microcystins produced during harmful cyanobacterial blooms are a public health concern. Although patterns are emerging, the environmental cues that stimulate production of microcystin remain confusing, hindering our ability to predict fluctuations in bloom toxicity. In earlier work, growth at cool temperatures relative to optimum (18°C vs. 26°C) was confirmed to increase microcystin quota in batch cultures of Microcystis aeruginosa NIES-843. Here, we tested this response in M. aeruginosa PCC 7806 using continuous cultures to examine temporal dynamics and using RNA-sequencing to investigate the physiological nature of the response. A temperature reduction from 26 to 19°C increased microcystin quota ∼2-fold, from an average of ∼464 ag µm-3 cell volume to ∼891 ag µm-3 over a 7-9 d period. Reverting the temperature to 26°C returned the cellular microcystin quota to ∼489 ag µm-3. Long periods (31-42 d) at 19°C did not increase or decrease microcystin quota beyond that observed at 7-9 d. Nitrogen concentration had little effect on the overall response. RNA sequencing indicated that the decrease in temperature to 19°C induced a classic cold-stress response in M. aeruginosa PCC 7806, but this operated on a different timescale than the increased microcystin production. Microcystin quota showed a strong 48- to 72-h time-lag correlation to mcy gene expression, but no correlation to concurrent mcy expression. This work confirms an effect of temperature on microcystin quota and extends our understanding of the physiological nature of the response.

7.
Toxins (Basel) ; 11(1)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650549

RESUMEN

Butterfield Lake is a mesotrophic lake in New York State where residents and pets have experienced unexplained health issues. Microseira wollei (basionym Lyngbya wollei) was found at two of 15 sites in Butterfield Lake and analyzed for microcystins, anatoxins, cylindrospermopsins, and paralytic shellfish poisoning toxins (PSTs). Only PSTs and trace levels of anatoxin-a were detected in these samples. This is the first published report of PSTs within a New York State lake. To evaluate the environmental and temporal drivers leading to the observed toxicity, PST content at the two sites was examined in detail. There were distinct differences in the total PST content, filament nutrient, filament chlorophyll, and relationship to environmental drivers between the sites, as well as distinct differences in the total PST content measured using different analytical techniques. A multivariate model containing site, temperature, and filament chlorophyll explained 85% of the variation in PSTs observed over the growing season. This work emphasizes the importance of proper site selection and choice of analytical technique in the development of monitoring programs to protect lake users from the occurrence of benthic cyanobacteria toxins.


Asunto(s)
Toxinas Bacterianas/análisis , Cianobacterias/aislamiento & purificación , Lagos/análisis , Microcistinas/análisis , Saxitoxina/análisis , Tropanos/análisis , Uracilo/análogos & derivados , Contaminantes del Agua/análisis , Alcaloides , Cianobacterias/genética , Toxinas de Cianobacterias , Monitoreo del Ambiente , New York , ARN Ribosómico 16S , Intoxicación por Mariscos , Uracilo/análisis
8.
Huan Jing Ke Xue ; 36(8): 2906-10, 2015 Aug.
Artículo en Chino | MEDLINE | ID: mdl-26592020

RESUMEN

The influence of CNTs on the photolysis of organic pollutant was investigated by studying the photodegradation kinetics of SAL under 1000 W Xenon lamp, in the presence of three kinds of CNTs (SCNT, MWNT-COOH, MWNT-OH). In addition, the interaction between CNTs and Fe3" was also investigated. The results showed that the photodegradation of salbutamol followed pseudo-first-order kinetics, which could be inhibited by all three kinds of CNTs through light screening effect. Formation of singlet oxygen was detected during the photolysis, using the molecular probe furfuryl alcohol. All three kinds of CNTs could absorb electrons through competition, i.e., inhibit SAL photodegradation by light screening effect; meanwhile, the CNTs could generate singlet oxygen through photoexcitation to promote the photodegradation reaction. Both mechanisms coexisted, and in most cases, the inhibition effect was dominant. In addition, CNTs could inactivate the photoactive substance Fe3 in the water body by electrostatic adsorption, and affect the photochemical behavior of organic pollutants in natural water body.


Asunto(s)
Albuterol/química , Fotólisis , Contaminantes Químicos del Agua/química , Cinética , Xenón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA