Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hortic Res ; 11(1): uhad231, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288253

RESUMEN

Flavonoids are important compounds in tea leaves imparting bitter and astringent taste, which also play key roles in tea plants responding to environmental stress. Our previous study showed that the expression level of CsMYB67 was positively correlated with the accumulation of flavonoids in tea leaves as exposed to sunlight. Here, we newly reported the function of CsMYB67 in regulating flavonoid biosynthesis in tea leaves. CsMYB67 was localized in the nucleus and responded to temperature. The results of transient expression assays showed the co-transformation of CsMYB67 and CsTTG1 promoted the transcription of CsANS promoter in the tobacco system. CsTTG1 was bound to the promoter of CsANS based on the results of yeast one-hybrid (Y1H) and transient expression assays, while CsMYB67 enhanced the transcription of CsANS through protein interaction with CsTTG1 according to the results of yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC). Thus, CsMYB67-CsTTG1 module enhanced the anthocyanin biosynthesis through up-regulating the transcription of CsANS. Besides, CsMYB67 also enhanced the transcription of CsFLS and CsUFGT through forming transcription factor complexes. The function of CsMYB67 on flavonoid biosynthesis in tea leaves was validated by gene suppression assay. As CsMYB67 was suppressed, the transcriptional level of CsFLS was greatly reduced, leading to a significant increase in the contents of total catechins and total anthocyanidins. Hence, CsMYB67 plays an important role in regulating the downstream pathway of flavonoid biosynthesis in summer tea leaves.

2.
Molecules ; 26(19)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34641378

RESUMEN

Black net shade treatment attenuates flavonoid biosynthesis in tea plants, while the effect of light quality is still unclear. We investigated the flavonoid and transcriptome profiles of tea leaves under different light conditions, using black nets with different shade percentages, blue, yellow and red nets to alter the light intensity and light spectral composition in the fields. Flavonol glycosides are more sensitive to light intensity than catechins, with a reduction percentage of total flavonol glycosides up to 79.6% compared with 38.7% of total catechins under shade treatment. A total of 29,292 unigenes were identified, and the KEGG result indicated that flavonoid biosynthesis was regulated by both light intensity and light spectral composition while phytohormone signal transduction was modulated under blue net shade treatment. PAL, CHS, and F3H were transcriptionally downregulated with light intensity. Co-expression analysis showed the expressions of key transcription factors MYB12, MYB86, C1, MYB4, KTN80.4, and light signal perception and signaling genes (UVR8, HY5) had correlations with the contents of certain flavonoids (p < 0.05). The level of abscisic acid in tea leaves was elevated under shade treatment, with a negative correlation with TFG content (p < 0.05). This work provides a potential route of changing light intensity and spectral composition in the field to alter the compositions of flavor substances in tea leaves and regulate plant growth, which is instructive to the production of summer/autumn tea and matcha.


Asunto(s)
Camellia sinensis/genética , Flavonoides/biosíntesis , Redes Reguladoras de Genes , Luz , Hojas de la Planta/genética , Proteínas de Plantas/genética , Transcriptoma/efectos de la radiación , Camellia sinensis/química , Camellia sinensis/crecimiento & desarrollo , Camellia sinensis/efectos de la radiación , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/metabolismo
3.
Hortic Res ; 7: 7, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31908810

RESUMEN

Tea is among the world's most widely consumed non-alcoholic beverages and possesses enormous economic, health, and cultural values. It is produced from the cured leaves of tea plants, which are important evergreen crops globally cultivated in over 50 countries. Along with recent innovations and advances in biotechnologies, great progress in tea plant genomics and genetics has been achieved, which has facilitated our understanding of the molecular mechanisms of tea quality and the evolution of the tea plant genome. In this review, we briefly summarize the achievements of the past two decades, which primarily include diverse genome and transcriptome sequencing projects, gene discovery and regulation studies, investigation of the epigenetics and noncoding RNAs, origin and domestication, phylogenetics and germplasm utilization of tea plant as well as newly developed tools/platforms. We also present perspectives and possible challenges for future functional genomic studies that will contribute to the acceleration of breeding programs in tea plants.

4.
BMC Bioinformatics ; 20(1): 553, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694521

RESUMEN

BACKGROUND: Tea is the oldest and among the world's most popular non-alcoholic beverages, which has important economic, health and cultural values. Tea is commonly produced from the leaves of tea plants (Camellia sinensis), which belong to the genus Camellia of family Theaceae. In the last decade, many studies have generated the transcriptomes of tea plants at different developmental stages or under abiotic and/or biotic stresses to investigate the genetic basis of secondary metabolites that determine tea quality. However, these results exhibited large differences, particularly in the total number of reconstructed transcripts and the quality of the assembled transcriptomes. These differences largely result from limited knowledge regarding the optimized sequencing depth and assembler for transcriptome assembly of structurally complex plant species genomes. RESULTS: We employed different amounts of RNA-sequencing data, ranging from 4 to 84 Gb, to assemble the tea plant transcriptome using five well-known and representative transcript assemblers. Although the total number of assembled transcripts increased with increasing sequencing data, the proportion of unassembled transcripts became saturated as revealed by plant BUSCO datasets. Among the five representative assemblers, the Bridger package shows the best performance in both assembly completeness and accuracy as evaluated by the BUSCO datasets and genome alignment. In addition, we showed that Bridger and BinPacker harbored the shortest runtimes followed by SOAPdenovo and Trans-ABySS. CONCLUSIONS: The present study compares the performance of five representative transcript assemblers and investigates the key factors that affect the assembly quality of the transcriptome of the tea plants. This study will be of significance in helping the tea research community obtain better sequencing and assembly of tea plant transcriptomes under conditions of interest and may thus help to answer major biological questions currently facing the tea industry.


Asunto(s)
Camellia sinensis/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Transcriptoma/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Hojas de la Planta/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Plant Biotechnol J ; 17(10): 1938-1953, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30913342

RESUMEN

Tea is the world's widely consumed nonalcohol beverage with essential economic and health benefits. Confronted with the increasing large-scale omics-data set particularly the genome sequence released in tea plant, the construction of a comprehensive knowledgebase is urgently needed to facilitate the utilization of these data sets towards molecular breeding. We hereby present the first integrative and specially designed web-accessible database, Tea Plant Information Archive (TPIA; http://tpia.teaplant.org). The current release of TPIA employs the comprehensively annotated tea plant genome as framework and incorporates with abundant well-organized transcriptomes, gene expressions (across species, tissues and stresses), orthologs and characteristic metabolites determining tea quality. It also hosts massive transcription factors, polymorphic simple sequence repeats, single nucleotide polymorphisms, correlations, manually curated functional genes and globally collected germplasm information. A variety of versatile analytic tools (e.g. JBrowse, blast, enrichment analysis, etc.) are established helping users to perform further comparative, evolutionary and functional analysis. We show a case application of TPIA that provides novel and interesting insights into the phytochemical content variation of section Thea of genus Camellia under a well-resolved phylogenetic framework. The constructed knowledgebase of tea plant will serve as a central gateway for global tea community to better understand the tea plant biology that largely benefits the whole tea industry.


Asunto(s)
Camellia sinensis/genética , Biología Computacional , Genoma de Planta , Genómica , Filogenia ,
6.
Front Microbiol ; 8: 1801, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28979248

RESUMEN

MicroRNAs (miRNAs) are non-coding RNAs of approximately 20-24 nucleotides in length that serve as central regulators of eukaryotic gene expression by targeting mRNAs for cleavage or translational repression. In plants, miRNAs are associated with numerous regulatory pathways in growth and development processes, and defensive responses in plant-pathogen interactions. Recently, significant progress has been made in understanding miRNA-mediated gene silencing and how viruses counter this defense mechanism. Here, we summarize the current knowledge and recent advances in understanding the roles of miRNAs involved in the plant defense against viruses and viral counter-defense. We also document the application of miRNAs in plant antiviral defense. This review discusses the current understanding of the mechanisms of miRNA-mediated gene silencing and provides insights on the never-ending arms race between plants and viruses.

7.
J Sci Food Agric ; 97(9): 2975-2981, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27861949

RESUMEN

BACKGROUND: There are some studies to show that food-derived plant microRNAs (miRNAs) may be detected in mammals. The research evidence has provoked a considerable debate whether plant-derived miRNAs exert the same regulatory functions as endogenous animal miRNAs. To test the hypothesis, methods of highly sensitive absolute quantification miRNAs have been developed. However, absolute miRNA quantification of green tea has not yet been reported. This study is the first to build an absolute quantification method to detect miRNAs level in green tea using stem-loop quantitative real-time PCR (qRT-PCR). RESULTS: Two miRNAs, csn-miR164 (a conserved miRNA) and csn-miRn329 (a tea-specific miRNA), were selected as examples for the detection and absolute quantification of miRNAs in green tea samples using stem-loop qRT-PCR. The content of csn-miR164 was significantly higher in the Yuexi Cuilan (YX) samples than in the Shucheng Orchid (SC) samples. The content of csn-miRn329 was found to be high at the start of processing in leaf tissues in both the withering and soaking experiments, after which it gradually decreased with time. CONCLUSION: To the best of our knowledge, this is the first report to absolutely quantify the miRNAs present in green tea. This method will help to further investigate the possibility that tea-derived miRNAs may play an important role on defending against various diseases in humans. © 2016 Society of Chemical Industry.


Asunto(s)
Camellia sinensis/genética , MicroARNs/genética , ARN de Planta/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Camellia sinensis/metabolismo , MicroARNs/metabolismo , ARN de Planta/metabolismo
8.
Funct Integr Genomics ; 16(4): 383-98, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27098524

RESUMEN

Tea is a very popular and healthy nonalcoholic beverage worldwide. As an evergreen woody plant, the cultivation of tea plants (Camellia sinensis) is challenged by biotic stresses, and one of which is feeding of Ectropis oblique. In China, E. oblique infestation causes serious damages in many tea cultivation areas. Tea plants have evolved sophisticated strategies to cope with attack by E. oblique. To elucidate the molecular mechanisms of the response to E. oblique in tea plants, the differential gene expression profiles between the E. oblique damage-induced tea plants and undamaged control using RNA sequencing (RNA-Seq) were obtained. A total of 1859 differentially expressed genes were identified, including 949 upregulated and 910 downregulated genes. Overall, 90 signal transduction genes, 100 anti-insect responsive transcription factors, 50 genes related to phenylpropanoid biosynthesis, 41 unigenes related to herbivore-induced plant volatiles (HIPVs) biosynthesis, and 8 caffeine biosynthesis genes were found to be differentially regulated. Metabolic pathway analysis indicated that plant secondary metabolites and the signaling pathways may play an important role in defense against insects, and a closer examination at the expression of some crucial genes revealed differential expression patterns after feeding by E. oblique. Furthermore, quantitative RT-PCR (qRT-PCR) analysis further confirmed the results of RNA-Seq. Our dataset provides the most comprehensive sequence resource available for studying the resistance to E. oblique in tea, which will benefit our understanding of the overall mechanisms underlying inducible defenses responses, and may be useful to create novel prevention measures against insects to reduce pesticide usage in eco-friendly tea farming.


Asunto(s)
Camellia sinensis/genética , Hojas de la Planta/genética , Proteínas de Plantas/biosíntesis , Transcriptoma/genética , Animales , Camellia sinensis/parasitología , China , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Parásitos/genética , Lepidópteros/patogenicidad , Hojas de la Planta/parasitología , Proteínas de Plantas/genética , Té/genética
9.
PLoS One ; 11(3): e0151424, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26962860

RESUMEN

Tea is one of the most popular beverages across the world and is made exclusively from cultivars of Camellia sinensis. Many wild relatives of the genus Camellia that are closely related to C. sinensis are native to Southwest China. In this study, we first identified the distinct genetic divergence between C. sinensis and its wild relatives and provided a glimpse into the artificial selection of tea plants at a genome-wide level by analyzing 15,444 genomic SNPs that were identified from 18 cultivated and wild tea accessions using a high-throughput genome-wide restriction site-associated DNA sequencing (RAD-Seq) approach. Six distinct clusters were detected by phylogeny inferrence and principal component and genetic structural analyses, and these clusters corresponded to six Camellia species/varieties. Genetic divergence apparently indicated that C. taliensis var. bangwei is a semi-wild or transient landrace occupying a phylogenetic position between those wild and cultivated tea plants. Cultivated accessions exhibited greater heterozygosity than wild accessions, with the exception of C. taliensis var. bangwei. Thirteen genes with non-synonymous SNPs exhibited strong selective signals that were suggestive of putative artificial selective footprints for tea plants during domestication. The genome-wide SNPs provide a fundamental data resource for assessing genetic relationships, characterizing complex traits, comparing heterozygosity and analyzing putatitve artificial selection in tea plants.


Asunto(s)
Camellia sinensis/genética , Genes de Plantas , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Polimorfismo de Nucleótido Simple
10.
J Agric Food Chem ; 64(8): 1770-6, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26886573

RESUMEN

Hydroperoxide lyase (HPL, E.C. 4.1.2.) is the major enzyme in the biosynthesis of natural volatile aldehydes and alcohols in plants, however, little was known about HPL in tea plants (Camellia sinensis). A unique cDNA fragment was isolated by suppressive subtractive hybridization (SSH) from a tea plant subjected to herbivory by tea geometrid Ectropis obliqua. This full length cDNA acquired by RACE was 1476 bp and encoded 491 amino acids. DNA and protein BLAST searches showed high homology to HPL sequences from other plants. The His-tag expression vector pET-32a(+)/CsHPL was constructed and transferred into Escherichia coli Rosetta (DE3). The expression product of recombinant CsHPL in E. coli was about 60 kDa. The enzyme activity of CsHPL was 0.20 µmol·min(-1)·mg(-1). Quantitative RT-PCR analysis indicated CsHPL was strongly up-regulated in tea plants after Ectropis obliqua attack, suggesting that it may be an important candidate for defense against insects in tea plants.


Asunto(s)
Aldehído-Liasas/genética , Camellia sinensis/enzimología , Clonación Molecular , Sistema Enzimático del Citocromo P-450/genética , Hojas de la Planta/enzimología , Proteínas de Plantas/genética , Aldehído-Liasas/química , Aldehído-Liasas/metabolismo , Secuencia de Aminoácidos , Animales , Camellia sinensis/química , Camellia sinensis/genética , Camellia sinensis/parasitología , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Mariposas Nocturnas/fisiología , Hojas de la Planta/química , Hojas de la Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alineación de Secuencia
11.
J Plant Physiol ; 170(3): 272-82, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23228629

RESUMEN

Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) is considered to be a key enzyme in lignin biosynthesis, but little was known about CADs in tea plants (Camellia sinensis). A full-length cDNA sequence (CsCAD2) was isolated by suppressive subtractive hybridization (SSH) in Ectropis oblique feeding-induced tea plants, and another two full-length cDNA sequences (CsCAD1 and CsCAD3) were obtained from a transcriptome obtained by deep sequencing. However, they showed only 20-54% identities. Phylogenetic analysis revealed that they belonged to three different families. DNA gel blotting analysis revealed that two copies of CsCAD1 and CsCAD2 genes existed in tea genome, but CsCAD3 likely had only one copy. Recombinant proteins of these CsCADs were produced in Escherichia coli. The activity of purified recombinant CsCAD2 protein was up to 0.43 µmol min(-1) mg(-1). However, the other two recombinant proteins had lower activities, probably due to incomplete refolding. qRT-PCR analysis indicated that while CsCAD3 was strongly up-regulated in tea plants after E. oblique attack and mechanical damage, CsCAD1 and CsCAD2 showed only moderate or no changes in transcript levels. Treatment of defence-related hormones methyl jasmonate (MeJA) and salicylic acid (SA) elevated the expression of CsCAD1 and CsCAD2, but decreased the transcript abundance of CsCAD3. The transcript levels of CsCAD2 did not change after applying abscisic acid (ABA), whereas CsCAD1 and CsCAD3 were induced. These results suggested that these three CsCAD genes in tea plants may play a role in defense against insects and pathogens and adaptation to abiotic stresses and these genes likely have divergant functions.


Asunto(s)
Adaptación Fisiológica/genética , Oxidorreductasas de Alcohol/genética , Camellia sinensis/enzimología , Camellia sinensis/genética , Hojas de la Planta/enzimología , Ácido Abscísico/farmacología , Acetatos/farmacología , Oxidorreductasas de Alcohol/metabolismo , Secuencia de Aminoácidos , Animales , Camellia sinensis/parasitología , Clonación Molecular , Ciclopentanos/farmacología , ADN de Plantas , Escherichia coli/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Himenópteros/fisiología , Oxilipinas/farmacología , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/genética , Proteínas Recombinantes/metabolismo , Ácido Salicílico/farmacología
12.
Plant Cell Rep ; 31(1): 27-34, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21850593

RESUMEN

C-repeat/dehydration-responsive element binding factors (CBFs) can induce the expression of a suite of cold-responsive genes to increase plant cold tolerance, and inducer of CBF expression 1 (ICE1) is a major activator for CBF. In the present study, we isolated the full-length cDNAs of ICE1 and CBF from Camellia sinensis, designated as CsICE1 and CsCBF1, respectively. The deduced protein CsICE1 contains a highly conserved basic helix-loop-helix (bHLH) domain and C-terminal region of ICE1-like proteins. CsCBF1 contains all conserved domains of CBFs in other plant species and can specifically bind to the C-repeat/dehydration-responsive element (CRT/DRE) as confirmed by electrophoretic mobility shift assay. The transcription of CsICE1 had no apparent alteration after chilling treatment (4°C). CsCBF1 expression was not detected in normal temperature (20°C) but was induced immediately and significantly by low temperature (4°C). Our results suggest that ICE1-CBF cold-response pathway is conserved in tea plants. CsICE1 and CsCBF1, two components of this pathway, play roles in cold responses in tea plants.


Asunto(s)
Camellia sinensis/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Aclimatación/fisiología , Secuencia de Aminoácidos , Sitios de Unión , Frío , Secuencia Conservada , ADN Complementario , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Regulación de la Expresión Génica de las Plantas , Secuencias Hélice-Asa-Hélice/genética , Filogenia , Elementos de Respuesta
13.
BMC Genomics ; 12: 131, 2011 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-21356090

RESUMEN

BACKGROUND: Tea is one of the most popular non-alcoholic beverages worldwide. However, the tea plant, Camellia sinensis, is difficult to culture in vitro, to transform, and has a large genome, rendering little genomic information available. Recent advances in large-scale RNA sequencing (RNA-seq) provide a fast, cost-effective, and reliable approach to generate large expression datasets for functional genomic analysis, which is especially suitable for non-model species with un-sequenced genomes. RESULTS: Using high-throughput Illumina RNA-seq, the transcriptome from poly (A)+ RNA of C. sinensis was analyzed at an unprecedented depth (2.59 gigabase pairs). Approximate 34.5 million reads were obtained, trimmed, and assembled into 127,094 unigenes, with an average length of 355 bp and an N50 of 506 bp, which consisted of 788 contig clusters and 126,306 singletons. This number of unigenes was 10-fold higher than existing C. sinensis sequences deposited in GenBank (as of August 2010). Sequence similarity analyses against six public databases (Uniprot, NR and COGs at NCBI, Pfam, InterPro and KEGG) found 55,088 unigenes that could be annotated with gene descriptions, conserved protein domains, or gene ontology terms. Some of the unigenes were assigned to putative metabolic pathways. Targeted searches using these annotations identified the majority of genes associated with several primary metabolic pathways and natural product pathways that are important to tea quality, such as flavonoid, theanine and caffeine biosynthesis pathways. Novel candidate genes of these secondary pathways were discovered. Comparisons with four previously prepared cDNA libraries revealed that this transcriptome dataset has both a high degree of consistency with previous EST data and an approximate 20 times increase in coverage. Thirteen unigenes related to theanine and flavonoid synthesis were validated. Their expression patterns in different organs of the tea plant were analyzed by RT-PCR and quantitative real time PCR (qRT-PCR). CONCLUSIONS: An extensive transcriptome dataset has been obtained from the deep sequencing of tea plant. The coverage of the transcriptome is comprehensive enough to discover all known genes of several major metabolic pathways. This transcriptome dataset can serve as an important public information platform for gene expression, genomics, and functional genomic studies in C. sinensis.


Asunto(s)
Camellia sinensis/genética , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Té/química , Camellia sinensis/metabolismo , Análisis por Conglomerados , Etiquetas de Secuencia Expresada , Biblioteca de Genes , Genoma de Planta , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , ARN de Planta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...