Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Chemosphere ; 364: 143025, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111675

RESUMEN

As steel production increases, large volumes of highly toxic and nitrogen-rich coking wastewater (CWW) are produced, prompting the development of a novel oxic-hydrolytic-oxic (OHO) biological treatment combination designed for highly efficient removal of nitrogen-contained contaminants. However, previous studies have not comprehensively explored the CWW biotreatment from the perspective of nitrogen metabolism functional genes and pathways. Based on the investigation of taking the full-scale OHO biotreatment combination as a case, it was found that the O1 and O2 bioreactors remove nitrogen through the ammonia assimilation accounting for 33.87% of the total nitrogen (TN) removal rate, while the H bioreactor removes nitrogen through the simultaneous nitrification-denitrification accounting for 61.11% of the TN removal rate. The major ammonia assimilation taxa include Thauera, Immundisolibacter and Thiobacillus; the major nitrifying taxa include Nitrospira and Nitrosomonas; and the major denitrifying taxa include Thiobacillus, Lautropia and Mesorhizobium. Additionally, the H bioreactor exhibits the potential to be optimized for simultaneous nitrification-denitrification coupled with anaerobic ammonium oxidation (Anammox). These understandings will guide the optimization of engineering design and operational practices, contributing to more effective and sustainable wastewater treatment strategies.

2.
J Hazard Mater ; 472: 134540, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38733787

RESUMEN

Cyanide is a typical toxic reducing agent prevailing in wastewater with a well-defined chemical mechanism, whereas its exploitation as an electron donor by microorganisms is currently understudied. Given that conventional denitrification requires additional electron donors, the cyanide and nitrogen can be eliminated simultaneously if the reducing HCN/CN- and its complexes are used as inorganic electron donors. Hence, this paper proposes anaerobic cyanides oxidation for nitrite reduction, whereby the biological toxicity and activity of cyanides are modulated by bimetallics. Performance tests illustrated that low toxicity equivalents of iron-copper composite cyanides provided higher denitrification loads with the release of cyanide ions and electrons from the complex structure by the bimetal. Both isotopic labeling and Density Functional Theory (DFT) demonstrated that CN--N supplied electrons for nitrite reduction. The superposition of chemical processes reduces the biotoxicity and enhances the biological activity of cyanides in the CN-/Fe3+/Cu2+/NO2- coexistence system, including complex detoxification of CN- by Fe3+, CN- release by Cu2+ from [Fe(CN)6]3-, and NO release by nitrite substitution of -CN groups. Cyanide is the smallest structural unit of C/N-containing compounds and serves as a probe to extend the electron-donating principle of anaerobic cyanides oxidation to more electron-donor microbial utilization.


Asunto(s)
Cobre , Cianuros , Hierro , Nitritos , Oxidación-Reducción , Cianuros/toxicidad , Cianuros/química , Nitritos/química , Nitritos/toxicidad , Cobre/química , Cobre/toxicidad , Anaerobiosis , Hierro/química , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química , Aguas Residuales/química , Aguas Residuales/toxicidad , Desnitrificación/efectos de los fármacos
3.
ISME Commun ; 4(1): ycae049, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38808122

RESUMEN

Candidatus Accumulibacter, a key genus of polyphosphate-accumulating organisms, plays key roles in lab- and full-scale enhanced biological phosphorus removal (EBPR) systems. A total of 10 high-quality Ca. Accumulibacter genomes were recovered from EBPR systems operated at high temperatures, providing significantly updated phylogenetic and genomic insights into the Ca. Accumulibacter lineage. Among these genomes, clade IIF members SCELSE-3, SCELSE-4, and SCELSE-6 represent the to-date known genomes encoding a complete denitrification pathway, suggesting that Ca. Accumulibacter alone could achieve complete denitrification. Clade IIC members SSA1, SCUT-1, SCELCE-2, and SCELSE-8 lack the entire set of denitrifying genes, representing to-date known non-denitrifying Ca. Accumulibacter. A pan-genomic analysis with other Ca. Accumulibacter members suggested that all Ca. Accumulibacter likely has the potential to use dicarboxylic amino acids. Ca. Accumulibacter aalborgensis AALB and Ca. Accumulibacter affinis BAT3C720 seemed to be the only two members capable of using glucose for EBPR. A heat shock protein Hsp20 encoding gene was found exclusively in genomes recovered at high temperatures, which was absent in clades IA, IC, IG, IIA, IIB, IID, IIG, and II-I members. High transcription of this gene in clade IIC members SCUT-2 and SCUT-3 suggested its role in surviving high temperatures for Ca. Accumulibacter. Ambiguous clade identity was observed for newly recovered genomes (SCELSE-9 and SCELSE-10). Five machine learning models were developed using orthogroups as input features. Prediction results suggested that they belong to a new clade (IIK). The phylogeny of Ca. Accumulibacter was re-evaluated based on the laterally derived polyphosphokinase 2 gene, showing improved resolution in differentiating different clades.

4.
Water Res ; 257: 121741, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744061

RESUMEN

Biological treatment is commonly used in coking wastewater (CWW) treatment. Prokaryotic microbial communities in CWW treatment have been comprehensively studied. However, viruses, as the critical microorganisms affecting microbial processes and thus engineering parameters, still remain poorly understood in CWW treatment context. Employing viromics sequencing, the composition and function of the viral community in CWW treatment were discovered, revealing novel viral communities and key auxiliary metabolic functions. Caudovirales appeared to be the predominant viral order in the oxic-hydrolytic-oxic (OHO) CWW treatment combination, showing relative abundances of 62.47 %, 56.64 % and 92.20 % in bioreactors O1, H and O2, respectively. At the family level, Myoviridae, Podoviridae and Siphoviridae mainly prevailed in bioreactors O1 and H while Phycodnaviridae dominated in O2. A total of 56.23-92.24% of novel viral contigs defied family-level characterization in this distinct CWW habitat. The virus-host prediction results revealed most viruses infecting the specific functional taxa Pseudomonas, Acidovorax and Thauera in the entire OHO combination, demonstrating the viruses affecting bacterial physiology and pollutants removal from CWW. Viral auxiliary metabolic genes (AMGs) were screened, revealing their involvement in the metabolism of contaminants and toxicity tolerance. In the bioreactor O1, AMGs were enriched in detoxification and phosphorus ingestion, where glutathione S-transferase (GSTs) and beta-ketoadipyl CoA thiolase (fadA) participated in biodegradation of polycyclic aromatic hydrocarbons and phenols, respectively. In the bioreactors H and O2, the AMGs focused on cell division and epicyte formation of the hosts, where GDPmannose 4,6-dehydratase (gmd) related to lipopolysaccharides biosynthesis was considered to play an important role in the growth of nitrifiers. The diversities of viruses and AMGs decreased along the CWW treatment process, pointing to a reinforced virus-host adaptive strategy in stressful operation environments. In this study, the symbiotic virus-bacteria interaction patterns were proposed with a theoretical basis for promoting CWW biological treatment efficiency. The findings filled the gaps in the virus-bacteria interactions at the full-scale CWW treatment and provided great value for understanding the mechanism of biological toxicity and sludge activity in industrial wastewater treatment.


Asunto(s)
Aguas Residuales , Aguas Residuales/virología , Reactores Biológicos , Bacterias/metabolismo , Eliminación de Residuos Líquidos/métodos , Coque , Virus , Simbiosis
5.
Chemosphere ; 361: 142329, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38763396

RESUMEN

Carbon source is a key factor determining the denitrifying effectiveness and efficiency in wastewater treatment plants (WWTPs). Whereas, the relationships between diverse and distinct denitrifying communities and their favorable carbon sources in full-scale WWTPs were not well-understood. This study performed a systematic analysis of the relationships between the denitrifying community and carbon sources by using 15 organic compounds from four categories and activated sludge from 8 full-scale WWTPs. Results showed that, diverse denitrifying bacteria were detected with distinct relative abundances in 8 WWTPs, such as Haliangium (1.98-4.08%), Dechloromonas (2.00-3.01%), Thauera (0.16-1.06%), Zoogloea (0.09-0.43%), and Rhodoferax (0.002-0.104%). Overall, acetate resulted in the highest denitrifying activities (1.21-4.62 mg/L/h/gMLSS), followed by other organic acids (propionate, butyrate and lactate, etc.). Detectable dissimilatory nitrate reduction to ammonium (DNRA) was observed for all 15 carbon sources. Methanol and glycerol resulted in the highest DRNA. Acetate, butyrate, and lactate resulted in the lowest DNRA. Redundancy analysis and 16S cDNA amplicon sequencing suggested that carbon sources within the same category tended to correlate to similar denitrifiers. Methanol and ethanol were primarily correlated to Haliangium. Glycerol and amino acids (glutamate and aspartate) were correlated to Inhella and Sphaerotilus. Acetate, propionate, and butyrate were positively correlated to a wide range of denitrifiers, explaining the high efficiency of these carbon sources. Additionally, even within the same genus, different amplicon sequence variants (ASVs) performed distinctly in terms of carbon source preference and denitrifying capabilities. These findings are expected to benefit carbon source formulation and selection in WWTPs.


Asunto(s)
Carbono , Desnitrificación , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Aguas Residuales/microbiología , Carbono/metabolismo , Eliminación de Residuos Líquidos/métodos , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Aguas del Alcantarillado/microbiología , Nitratos/metabolismo , Nitratos/análisis , Compuestos de Amonio/metabolismo
6.
ISME Commun ; 4(1): ycae011, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38524765

RESUMEN

Fluorescence in situ hybridization (FISH) and 16S rRNA gene amplicon sequencing are commonly used for microbial ecological analyses in biological enhanced phosphorus removal (EBPR) systems, the successful application of which was governed by the oligonucleotides used. We performed a systemic evaluation of commonly used probes/primers for known polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs). Most FISH probes showed blind spots and covered nontarget bacterial groups. Ca. Competibacter probes showed promising coverage and specificity. Those for Ca. Accumulibacter are desirable in coverage but targeted out-group bacteria, including Ca. Competibacter, Thauera, Dechlorosoma, and some polyphosphate-accumulating Cyanobacteria. Defluviicoccus probes are good in specificity but poor in coverage. Probes targeting Tetrasphaera or Dechloromonas showed low coverage and specificity. Specifically, DEMEF455, Bet135, and Dech453 for Dechloromonas covered Ca. Accumulibacter. Special attentions are needed when using these probes to resolve the PAO/GAO phenotype of Dechloromonas. Most species-specific probes for Ca. Accumulibacter, Ca. Lutibacillus, Ca. Phosphoribacter, and Tetrasphaera are highly specific. Overall, 1.4% Ca. Accumulibacter, 9.6% Ca. Competibacter, 43.3% Defluviicoccus, and 54.0% Dechloromonas in the MiDAS database were not covered by existing FISH probes. Different 16S rRNA amplicon primer sets showed distinct coverage of known PAOs and GAOs. None of them covered all members. Overall, 520F-802R and 515F-926R showed the most balanced coverage. All primers showed extremely low coverage of Microlunatus (<36.0%), implying their probably overlooked roles in EBPR systems. A clear understanding of the strength and weaknesses of each probe and primer set is a premise for rational evaluation and interpretation of obtained community results.

7.
Sci Total Environ ; 918: 170273, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38280590

RESUMEN

The increased use of disinfection since the pandemic has led to increased effective chlorine concentration in municipal wastewater. Whereas, the specific impacts of active chlorine on nitrogen and phosphorus removal, the mediating communities, and the related metabolic activities in wastewater treatment plants (WWTPs) lack systematic investigation. We systematically analyzed the influences of chlorine disinfection on nitrogen and phosphorus removal activities using activated sludge from five full-scale WWTPs. Results showed that at an active chlorine concentration of 1.0 mg/g-SS, the nitrogen and phosphorus removal systems were not significantly affected. Major effects were observed at 5.0 mg/g-SS, where the nitrogen and phosphorus removal efficiency decreased by 38.9 % and 44.1 %, respectively. At an active chlorine concentration of 10.0 mg/g-SS, the nitrification, denitrification, phosphorus release and uptake activities decreased by 15.1 %, 69.5-95.9 %, 49.6 % and 100 %, respectively. The proportion of dead cells increased by 6.1 folds. Reverse transcriptional quantitative polymerase chain reaction (RT-qPCR) analysis showed remarkable inhibitions on transcriptions of the nitrite oxidoreductase gene (nxrB), the nitrite reductase genes (nirS and nirK), and the nitrite reductase genes (narG). The nitrogen and phosphorus removal activities completely disappeared with an active chlorine concentration of 25.0 mg/g-SS. Results also showed distinct sensitivities of different functional bacteria in the activated sludge. Even different species within the same functional group differ in their susceptibility. This study provides a reference for the understanding of the threshold active chlorine concentration values which may potentially affect biological nitrogen and phosphorus removal in full-scale WWTPs, which are expected to be beneficial for decision-making in WWTPs to counteract the potential impacts of increased active chlorine concentrations in the influent wastewater.


Asunto(s)
Aguas Residuales , Purificación del Agua , Aguas del Alcantarillado/microbiología , Cloro , Nitrógeno/metabolismo , Fósforo/metabolismo , Desinfección , Nitrificación , Nitrito Reductasas/metabolismo , Desnitrificación , Reactores Biológicos , Eliminación de Residuos Líquidos/métodos
8.
Bioresour Technol ; 393: 130048, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37980947

RESUMEN

Previous researches have recognized the vital role of Tetrasphaera elongata in enhanced biological phosphorus removal systems, but the underlying mechanisms remain under-investigated. To address this issue, this study investigated the metabolic characteristics of Tetrasphaera elongata when utilizing glucose as the sole carbon source. Results showed under aerobic conditions, Tetrasphaera elongata exhibited a glucose uptake rate of 136.6 mg/(L·h) and a corresponding phosphorus removal rate of 8.6 mg P/(L·h). Upregulations of genes associated with the glycolytic pathway and oxidative phosphorylation were observed. Noteworthily, the genes encoding the two-component sensor histidine kinase and response regulator transcription factor exhibited a remarkable 28.3 and 27.4-fold increase compared with the group without glucose. Since these genes play a pivotal role in phosphate-specific transport systems, collectively, these findings shed light on a potential mechanism for simultaneous decarbonization and phosphorus removal by Tetrasphaera elongata under aerobic conditions, providing fresh insights into phosphorus removal from wastewaters.


Asunto(s)
Actinobacteria , Actinomycetales , Glucosa , Glucosa/metabolismo , Fósforo/metabolismo , Carbono/metabolismo , Polifosfatos/metabolismo , Actinomycetales/genética , Actinomycetales/metabolismo , Reactores Biológicos , Aguas del Alcantarillado
9.
J Hazard Mater ; 465: 133108, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38118195

RESUMEN

Due to the intervention of human activities, the background values of riverbed sediment exhibit spatiotemporal variability, which can affect the accuracy of risk assessment results. Using risk assessment that do not rely on background values is an executable alternative to avoid such problems. In this study, a relative pollution level assessment (RPLA) method which was based on the statistical results of relevant literatures was proposed. This method includes a four-step data processing procedure to extract the evaluation indexes of relative pollution degree of pollutants in environment and a series of relative pollution status assessment methods to evaluate the overall relative pollution level and regional difference of world-wide rivers. To demonstrate how to use RPLA method, 310 relevant literatures covering world-wide rivers were selected. And the ambient background value (x̅), the world-wide threshold values (WWTV) and the relative pollution grades (LEVEL I ∼ IV) of 9 target metals (Cr, Ni, Cu, Zn, As, Cd, Pb, Sb and Tl) in riverbed surface sediments of world-wide rivers were extracted and used for evaluation. Moreover, the stability and applicability of RPLA method were evaluated. Results show that the evaluation results of RPLA method are robust and comparable with traditional evaluation method.

10.
Water Res ; 246: 120713, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37839225

RESUMEN

Previous research suggested that two major groups of polyphosphate-accumulating organisms (PAOs), i.e., Ca. Accumulibacter and Tetrasphaera, play cooperative roles in enhanced biological phosphorus removal (EBPR). The fermentation of complex organic compounds by Tetrasphaera provides carbon sources for Ca. Accumulibacter. However, the viability of the fermentation products (e.g., lactate, succinate, alanine) as carbon sources for Ca. Accumulibacter and their potential effects on the metabolism of Ca. Accumulibacter were largely unknown. This work for the first time investigated the capability and metabolic details of Ca. Accumulibacter cognatus clade IIC strain SCUT-2 (enriched in a lab-scale reactor with a relative abundance of 42.8%) in using these fermentation products for EBPR. The enrichment culture was able to assimilate lactate and succinate with the anaerobic P release to carbon uptake ratios of 0.28 and 0.36 P mol/C mol, respectively. In the co-presence of acetate, the uptake of lactate was strongly inhibited, since two substrates shared the same transporter as suggested by the carbon uptake bioenergetic analysis. When acetate and succinate were fed at the same time, Ca. Accumulibacter assimilated two carbon sources simultaneously. Proton motive force (PMF) was the key driving force (up to 90%) for the uptake of lactate and succinate by Ca. Accumulibacter. Apart from the efflux of proton in symport with phosphate via the inorganic phosphate transport system, translocation of proton via the activity of fumarate reductase contributed to the generation of PMF, which agreed with the fact that PHV was a major component of PHA when lactate and succinate were used as carbon sources, involving the succinate-propionate pathway. Metabolic models for the usage of lactate and succinate by Ca. Accumulibacter for EBPR were built based on the combined physiological, biochemical, metagenomic, and metatranscriptomic analyses. Alanine was shown as an invalid carbon source for Ca. Accumulibacter. Instead, it significantly and adversely affected Ca. Accumulibacter-mediated EBPR. Phosphate release was observed without alanine uptake. Significant inhibitions on the aerobic phosphate uptake was also evident. Overall, this study suggested that there might not be a simply synergic relationship between Ca. Accumulibacter and Tetrasphaera. Their interactions would largely be determined by the kind of fermentation products released by the latter.


Asunto(s)
Betaproteobacteria , Fósforo , Fósforo/metabolismo , Fermentación , Protones , Reactores Biológicos , Betaproteobacteria/metabolismo , Polifosfatos/metabolismo , Lactatos/metabolismo , Alanina , Succinatos/metabolismo , Carbono/metabolismo , Acetatos/metabolismo
11.
Bioresour Technol ; 384: 129274, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37290714

RESUMEN

This study investigated the effects of NO2- on synergetic interactions between Anammox bacteria (AnAOB) and sulfur-oxidizing bacteria (SOB) in an autotrophic denitrification-Anammox system. The presence of NO2- (0-75 mg-N/L) was shown to significantly enhance NH4+ and NO3- conversion rates, achieving intensified synergy between AnAOB and SOB. However, once NO2- exceed a threshold concentration (100 mg-N/L), both NH4+ and NO3- conversion rates decreased with increased NO2- consumption via autotrophic denitrification. The cooperation between AnAOB and SOB was decoupled due to the NO2- inhibition. Improved system reliability and nitrogen removal performance was achieved in a long-term reactor operation with NO2- in the influent; reverse transcription-quantitative polymerase chain reaction analysis showed elevated hydrazine synthase gene transcription levels (5.00-fold), comparing to these in the reactor without NO2-. This study elucidated the mechanism of NO2- induced synergetic interactions between AnAOB and SOB, providing theoretical guidance for engineering applications of Anammox-based coupled systems.


Asunto(s)
Desnitrificación , Nitritos , Nitrógeno/análisis , Oxidación Anaeróbica del Amoníaco , Dióxido de Nitrógeno/análisis , Reproducibilidad de los Resultados , Reactores Biológicos/microbiología , Bacterias , Oxidación-Reducción , Azufre , Aguas del Alcantarillado/microbiología
12.
Environ Res ; 231(Pt 2): 116219, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37224950

RESUMEN

The coexistence of reduced sulfur (-2) compounds (S2-, FeS and SCN-) are found in some industrial wastewaters due to pre-treatment of Fe(II) salts. These compounds as electron donors have attracted increasing interest in autotrophic denitrification process. However, the difference of their functions still remain unknown, which limit efficient utilization in autotrophic denitrification process. The study aimed to investigate and compare utilization behavior of these reduced sulfur (-2) compounds in autotrophic denitrification process activated by thiosulfate-driven autotrophic denitrifiers (TAD). Results showed that the best denitrification performance was observed in SCN-; while the reduction of nitrate was significantly inhibited in S2- system and the efficient accumulation of nitrite was observed in FeS system with cycle experiments continuing. Additionally, intermediates containing sulfur were produced rarely in SCN- system. However, the utilization of SCN- was limited obviously in comparison with S2- in coexistence systems. Moreover, the presence of S2- increased the accumulation peak of nitrite in coexistence systems. The biological results indicated that the TAD utilized rapidly these sulfur (-2) compounds, in which genus of Thiobacillus, Magnetospirillum and Azoarcus might play main roles. Moreover, Cupriavidus might also participate in sulfur oxidation in SCN- system. In conclusion, these might be attributed to the characteristics of sulfur (-2) compounds including the toxicity, solubility and reaction process. These findings provide theoretical basis for regulation and utilization of these reduced sulfur (-2) compounds in autotrophic denitrification process.


Asunto(s)
Nitritos , Racepinefrina , Tiosulfatos , Desnitrificación , Reactores Biológicos , Azufre
13.
Sci Total Environ ; 880: 163300, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37031928

RESUMEN

Sustainable nitrogen removal from wastewater at reduced energy and/or chemical consumptions is challenging. This paper investigated, for the first time, the feasibility of coupled partial nitrification, Anammox and nitrate-dependent Fe(II) oxidation (NDFO) for sustainable autotrophic nitrogen removal. With NH4+-N as the only nitrogen-containing compound in the influent, near-complete nitrogen removal (a total of 97.5 % with a maximal total nitrogen removal rate of 6.64 ± 2.68 mgN/L/d) was achieved in a sequencing batch reactor for a 203-d operation without organic carbon source addition and forced aeration. Anammox (predominated by Candidatus Brocadia) and NDFO bacteria (such as Denitratisoma) were successfully enriched, with total relative abundances up to 11.54 % and 10.19 %, respectively. Dissolved oxygen (DO) concentration was a key factor affecting the coupling of multi (ammonia oxidization, Anammox, NDFO, iron-reduction, etc.) bacterial communities, resulting in different total nitrogen removal efficiencies and rates. In batch tests, the optimal DO concentration was 0.50-0.68 mg/L with a maximal total nitrogen removal efficiency of 98.7 %. Fe(II) in the sludge not only competed with nitrite oxidizing bacteria for DO to prevent complete nitrification, but promoted the transcription of NarG and NirK genes (10.5 and 3.5 times higher than the group without Fe(II) addition) as indicated by the reverse transcription quantitative polymerase chain reaction (RT-qPCR), resulting in increased NDFO rate (by 2.7 times) and promoted NO2--N generated from NO3--N, which back fed the Anammox process, achieving near-complete nitrogen removal. The reduction of Fe(III) by iron-reducing bacteria (IRB) and hydrolytic and fermentative anaerobes enabled a sustainable Fe(II)/Fe(III) recycling, avoiding the need in continuous Fe(II) or Fe (III) dosage. The coupled system is expected to benefit the development of novel autotrophic nitrogen removal processes with neglectable energy and material consumptions for the treatment of wastewater with low organic carbon and NH4+-N contents in underdeveloped regions, such as decentralized rural wastewaters.


Asunto(s)
Nitratos , Nitrificación , Aguas Residuales , Nitrógeno , Desnitrificación , Oxígeno , Oxidación Anaeróbica del Amoníaco , Compuestos Férricos , Aguas del Alcantarillado , Compuestos de Nitrógeno , Oxidación-Reducción , Bacterias , Hierro , Compuestos Ferrosos , Reactores Biológicos/microbiología
14.
Chemosphere ; 329: 138660, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37044138

RESUMEN

Hydraulic retention time (HRT), as an important parameter in the wastewater treatment process, has a great impact on water quality and energy consumption. With the rapid advances in computer technology and deepened understanding of in microbial metabolism, a series of activated sludge models (ASMs) have been developed and applied in wastewater treatment. However, ASMs simulation based on the nexus of HRT, water treatment process, water quality and energy consumption has yet to be verified. In this study, HRT was creatively linked to water treatment process variation. And a novel combined process model (CPM) was developed based on the operational data and treatment performance data from 4 full-scale coking wastewater treatment processes. In the CPM, an array of biological treatment processes were represented by setting the HRT in respective treatment units of the anaerobic-oxic-hydrolytic & denitrification-oxic (A/O/H/O) process. The relationships between HRT, effluent quality and energy consumption were systematically analyzed. Results showed that: (i) for A/O/H/O process, the HRT of first oxic (O1) reactor has a key effect on the effluent water quality and energy consumption, while the impact of the anaerobic (A) reactor HRT was limited; (ii) the O/H/O process has a clear advantage in treating coking wastewater due to the carbon removal and detoxification function of O1 reactor; (iii) the lowest energy consumption (with the total system HRT below 210 h) to meet the biological effluent quality requirements (COD = 200 mg/L, TN = 50 mg/L) is 4.429 kWh/m3. Since the CPM could effectively work out the optimal process configuration and break the boundaries between HRT and process variation, it has enormous potential to be extended to the design of other wastewater treatment processes.


Asunto(s)
Coque , Purificación del Agua , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos , Aguas Residuales , Aguas del Alcantarillado , Anaerobiosis
15.
Sci Total Environ ; 881: 163384, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37044344

RESUMEN

Due to the phosphorus (P) deficiency in coking wastewater, sufficient P needs to be provided in the treatment process to maintain biotic activity. However, most of the dosed P sources are transferred to the sludge phase out of the chemical equilibrium. After an in-depth investigation of P morphology changes in coking wastewater treatment, it is found that above 71.6 % P applied to the full-scale O/H/H/O (oxic-hydrolytic & denitrification-hydrolytic & denitrification-oxic) process for coking wastewater treatment is ended up in the sludge phase of the aerobic reactors in the forms of non-apatite inorganic phosphorus (NAIP). Theoretical simulations suggest that the P forms precipitates such as FePO4·2H2O, AlPO4·2H2O, MnHPO4 at pH < 7, and Ca5(PO4)3OH at pH > 7. Microbial utilization of P in coking wastewater treatment is swayed by precipitation, pH and sludge retention time (SRT). By pyrolysis treatment of the waste sludge at 700 °C, phosphoric substances in coking sludge are enriched and converted into Ca5(PO4)3OH, Ca5(PO4)3Cl, Ca3(PO4)2, etc. with apatite phosphorus (AP) accounting for 65.7 % of total phosphorus. Moreover, the heavy metals in biochar were below the national standard limits for discharge. This study shows that hazardous waste (coking sludge) can be transformed into bioavailable products (P-rich biochar) through comprehensive management of the fate of P. Combined with the O/H/H/O process, the mechanisms of phosphorus consumption in coking wastewater treatment are revealed for the first time, which will facilitate a reduced consumption of phosphorus and provide a demonstration for other phosphorus-deficient industrial wastewater treatment.


Asunto(s)
Coque , Aguas Residuales , Aguas del Alcantarillado/química , Fósforo/química
16.
Water Res ; 235: 119906, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37004306

RESUMEN

Candidatus Accumulibacter plays a major role in enhanced biological phosphorus removal (EBPR) from wastewater. Although bacteriophages have been shown to represent fatal threats to Ca. Accumulibacter organisms and thus interfere with the stability of the EBPR process, little is known about the ability of different Ca. Accumulibacter strains to resist phage infections. We conducted a systematic analysis of the occurrence and characteristics of clustered regularly interspaced short palindromic repeats and associated proteins (CRISPR-Cas) systems and prophages in Ca. Accumulibacter lineage members (43 in total, including 10 newly recovered genomes). Results indicate that 28 Ca. Accumulibacter genomes encode CRISPR-Cas systems. They were likely acquired via horizontal gene transfer, conveying a distinct adaptivity to phage predation to different Ca. Accumulibacter members. Major differences in the number of spacers show the unique phage resistance of these members. A comparison of the spacers in closely related Ca. Accumulibacter members from distinct geographical locations indicates that habitat isolation may have resulted in the acquisition of resistance to different phages by different Ca. Accumulibacter. Long-term operation of three laboratory-scale EBPR bioreactors revealed high relative abundances of Ca. Accumulibacter with CRISPSR-Cas systems. Their specific resistance to phages in these reactors was indicated by spacer analysis. Metatranscriptomic analyses showed the activation of the CRISPR-Cas system under both anaerobic and aerobic conditions. Additionally, 133 prophage regions were identified in 43 Ca. Accumulibacter genomes. Twenty-seven of them (in 19 genomes) were potentially active. Major differences in the occurrence of CRISPR-Cas systems and prophages in Ca. Accumulibacter will lead to distinct responses to phage predation. This study represents the first systematic analysis of CRISPR-Cas systems and prophages in the Ca. Accumulibacter lineage, providing new perspectives on the potential impacts of phages on Ca. Accumulibacter and EBPR systems.


Asunto(s)
Bacteriófagos , Betaproteobacteria , Profagos/genética , Sistemas CRISPR-Cas , Bacteriófagos/genética , Filogenia , Aguas Residuales
17.
Bioresour Technol ; 380: 129069, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37086926

RESUMEN

The efficient utilization of thiocyanate remain be an important bottleneck in the low-cost nitrogen removal for wastewaters containing thiocyanate. The study aimed to investigate the feasibility of thiocyanate in removal of nitrate and ammonium through anammox (AN) and thiosulfate-driven autotrophic denitrifiers (TSAD). The results showed that removal of nitrate and ammonium were achieved rapidly utilizing thiocyanate, which was attributed to degradation of thiocyanate by TSAD and cooperation with AN. The utilization efficiency of thiocyanate in nitrogen removal was increased by 250% due to the microbial cooperation. Excess thiocyanate and ammonium did not influence the nitrogen removal amount. However, the nitrogen removal were affected obviously by the biomass ratio (XAN/XTSAD) between AN and TSAD Moreover, the dynamics related to removal of pollutants was described successfully by a modified Monod model with time constraints. These findings offer an insight for efficient utilization of thiocyanate in nitrogen removal via microbial cooperation.


Asunto(s)
Compuestos de Amonio , Nitratos , Tiosulfatos , Tiocianatos , Oxidación Anaeróbica del Amoníaco , Desnitrificación , Reactores Biológicos , Oxidación-Reducción , Nitrógeno
18.
Chemosphere ; 325: 138378, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36906008

RESUMEN

Adsorption showed advantages in removing phosphorus (P) at low concentrations. Desirable adsorbents should have sufficiently high adsorption capacity and selectivity. In this study, a Ca-La layered double hydroxide (LDH) was synthesized for the first time by using a simple hydrothermal coprecipitation method for phosphate removal from wastewater. A maximum adsorption capacity of 194.04 mgP/g was achieved, ranking on the top of known LDHs. Adsorption kinetic experiments showed that 0.02 g/L Ca-La LDH could effectively reduce PO43-P from 1.0 to <0.02 mg/L within 30 min. With the copresence of bicarbonate and sulfate at concentrations 17.1 and 35.7 times of that of PO43-P, the Ca-La LDH showed promising selectivity towards phosphate (with a reduction in the adsorption capacity of <13.6%). In addition, four other (Mg-La, Co-La, Ni-La, and Cu-La) LDHs containing different divalent metal ions were synthesized by using the same coprecipitation method. Results showed much higher P adsorption performance of the Ca-La LDH than those LDHs. Field Emission Electron Microscopy (FE-SEM)-Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), and mesoporous analysis were performed to characterize and compare the adsorption mechanisms of different LDHs. The high adsorption capacity and selectivity of the Ca-La LDH were mainly explained by selective chemical adsorption, ion exchange, and inner sphere complexation.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Fosfatos/análisis , Hidróxidos/química , Adsorción , Contaminantes Químicos del Agua/análisis , Cinética
19.
J Hazard Mater ; 447: 130802, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36669414

RESUMEN

In this study, physicochemical pre- and post-treatment of highly polluting coking wastewater (CWW) for the removal of refractory compounds and recovery of high-energy substances/components was investigated. An economic optimization model targeting the development of a cost-effective and sustainable treatment technology was proposed. At the post-treatment stage, powdered activated carbon (PAC) was used to separate the refractory and toxic pollutants from the bio-treated CWW, with the adsorption capacity ranging from 50 to 120 mg chemical oxygen demand (COD) g-1 PAC. Then, the spent PAC, together with a coagulant, was reused in the pre-treatment of highly concentrated raw CWW, which lifted the adsorption capacity to 800-1200 mg COD g-1 PAC. Results showed that the adsorbent's high selectivity towards macromolecular and complicated pollutants could remove 25-65 % of COD in both CWW flows. Analysis of pollutants' molecular weight distribution and GC-MS indicated a good affinity between PAC and high-energy pollutants (phenolic compounds and alkanes), which could transfer 144,555 kJ m-3 of energy from CWW to the adsorption-coagulation sludge. The economic optimization model suggested that the cost of the adsorbent was compensated by the net benefits of energy recovery and that profit was achieved when the PAC price was less than 5562 CNY t-1. The proposed two-stage PAC/coagulant approach offers a way to sustainable water quality and sludge management, plus energy recycling, in CWW treatment. It may also be applied to the treatment of other industrial wastewaters.

20.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36688754

RESUMEN

Biological treatment processes are an effective method for removing the nitrogen-containing contaminants that exist in coking wastewater. However, little is known about microbial composition and keystone taxa involved in biological nitrogen removal processes. In order to improve the removal efficiency of nitrogen-containing contaminants in anaerobic-aerobic-hydrolytic-aerobic (A/O1/H/O2) system, the microbial composition and interactions of keystone taxa should be clarified. The present work clarifies the removal performance of nitrogen-containing contaminants in the A/O1/H/O2 system, identifies the microbial community involved in various bioreactors, and reveals the keystone taxa within the microbial communities. Combined the processes of ammoniation, denitrification, and nitrification, total nitrogen decreased from 248 to 31 mg L-1 and achieved a removal efficiency of 87.5% in the full-scale A/O1/H/O2 system. High-throughput MiSeq sequencing revealed that Proteobacteria was the most abundant phylum in the A/O1/H/O2 system with relative abundances of 24%-50%. Thiobacillus dominated in bioreactors A and O1 with relative abundances of 2.90% and 4.44%, respectively, while Nitrospira was identified as the most dominant genus in bioreactors H and O2, accounting for 13.33% and 18.38%, respectively. The microbial community composition and co-occurrence network analysis showed that the keystone taxa belonged to Thiobacillus, Nitrospira, Bdellovibrio, Planctomyces, Desulfotomaculum, and Sphingobium, which are related to nitrogen degradation.


Asunto(s)
Coque , Microbiota , Purificación del Agua , Aguas del Alcantarillado/microbiología , Desnitrificación , Nitrógeno/metabolismo , Nitrificación , Bacterias , Reactores Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA