Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3766, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704382

RESUMEN

Coordination cages have been widely reported to bind a variety of guests, which are useful for chemical separation. Although the use of cages in the solid state benefits the recycling, the flexibility, dynamicity, and metal-ligand bond reversibility of solid-state cages are poor, preventing efficient guest encapsulation. Here we report a type of coordination cage-integrated solid materials that can be swelled into gel in water. The material is prepared through incorporation of an anionic FeII4L6 cage as the counterion of a cationic poly(ionic liquid) (MOC@PIL). The immobilized cages within MOC@PILs have been found to greatly affect the swelling ability of MOC@PILs and thus the mechanical properties. Importantly, upon swelling, the uptake of water provides an ideal microenvironment within the gels for the immobilized cages to dynamically move and flex that leads to excellent solution-level guest binding performances. This concept has enabled the use of MOC@PILs as efficient adsorbents for the removal of pollutants from water and for the purification of toluene and cyclohexane. Importantly, MOC@PILs can be regenerated through a deswelling strategy along with the recycling of the extracted guests.

2.
Int J Biol Macromol ; 270(Pt 1): 131796, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677688

RESUMEN

As a country with abundant genetic resources of pigs, the domestication history of pigs in China and the adaptive evolution of Chinese pig breeds at different latitudes have rarely been elucidated at the genome-wide level. To fill this gap, we first assembled a high-quality chromosome-level genome of the Chenghua pig and used it as a benchmark to analyse the genomes of 272 samples from three genera of three continents. The divergence of the three species belonging to three genera, Phacochoerus africanus, Potamochoerus porcus, and Sus scrofa, was assessed. The introgression of pig breeds redefined that the migration routes were basically from southern China to central and southwestern China, then spread to eastern China, arrived in northern China, and finally reached Europe. The domestication of pigs in China occurred ∼12,000 years ago, earlier than the available Chinese archaeological domestication evidence. In addition, FBN1 and NR6A1 were identified in our study as candidate genes related to extreme skin thickness differences in Eurasian pig breeds and adaptive evolution at different latitudes in Chinese pig breeds, respectively. Our study provides a new resource for the pig genomic pool and refines our understanding of pig genetic diversity, domestication, migration, and adaptive evolution at different latitudes.


Asunto(s)
Domesticación , Genoma , Animales , Porcinos/genética , Genoma/genética , China , Adaptación Fisiológica/genética , Sus scrofa/genética , Filogenia , Cruzamiento , Variación Genética , Evolución Molecular
3.
Materials (Basel) ; 17(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38591981

RESUMEN

Single-pass isothermal hot compression tests on four medium-Mn steels with different C and Al contents were conducted using a Gleeble-3500 thermal simulation machine at varying deformation temperatures (900-1150 °C) and strain rates (0.01-5 s-1). Based on friction correction theory, the friction of the test stress-strain data was corrected. On this basis, the Arrhenius constitutive model of experimental steels considering Al content and strain compensation and hot processing maps of different experimental steels at a strain of 0.9 were established. Moreover, the effects of C and Al contents on constitutive model parameters and hot processing performance were analyzed. The results revealed that the increase in C content changed the trend of the thermal deformation activation energy Q with the true strain. The Q value of 2C7Mn3Al increased by about 50 KJ/mol compared with 7Mn3Al at a true strain greater than 0.4. In contrast, increasing the Al content from 0 to 1.14 wt.% decreased the activation energy of thermal deformation in the true strain range of 0.4-0.9. Continuing to increase to 3.30 wt.% increased the Q of 7Mn3Al over 7Mn by about 65 KJ/mol over the full strain range. In comparison, 7Mn1Al exhibited the best hot processing performance under the deformation temperature of 975-1125 °C and strain rate of 0.2-5 s-1. This is due to the addition of C element reduces the δ-ferrite volume fraction, which leads to the precipitation of κ-carbides and causes the formation of microcracks; an increase in Al content from 0 to 1.14 wt.% reduces the austenite stability and improves the hot workability, but a continued increase in the content up to 3.30 wt.% results in the emergence of δ-ferrite in the microstructure, which slows down the austenite DRX and not conducive to the hot processing performance.

4.
Opt Express ; 32(6): 9343-9361, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571171

RESUMEN

Many chlorophyll-a (Chl-a) remote sensing estimation algorithms have been developed for inland water, and they are proposed always based on some ideal assumptions, which are difficult to meet in complex inland waters. Based on MIE scattering theory, this study calculated the optical properties of mineral particles under different size distribution and refractive index conditions, and the Hydrolight software was employed to simulate remote sensing reflectance in the presence of different mineral particles. The findings indicated that the reflectance is significantly influenced by the slope (j) of particle size distribution function and the imaginary part (n') of the refractive index, with the real part (n) having a comparatively minor impact. Through both a simulated dataset containing 18,000 entries and an in situ measured dataset encompassing 2183 data from hundreds of lakes worldwide, the sensitivities of band ratio (BR), fluorescence baseline height (FLH), and three-band algorithms (TBA) to mineral particles were explored. It can be found that BR showed the best tolerance to mineral particles, followed by TBA. However, when the ISM concentration is less than 30 g m-3, the influence of CDOM cannot be ignored. Additionally, a dataset of over 400 entries is necessary for developing the BR algorithm to mitigate the incidental errors arising from differences in data magnitude. And if the amount of developing datasets is less than 400 but greater than 200, the TBA algorithm is more likely to obtain more stable accuracy.

5.
Phys Chem Chem Phys ; 26(8): 7042-7048, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38345537

RESUMEN

Alkaline deep eutectic solvents (DESs) have been widely employed across diverse fields. A comprehensive understanding of the alkalinity data is imperative for the comprehension of their performance. However, the current range of techniques for quantifying alkalinity is constrained. In this investigation, we formulated a series of alkaline DESs and assessed their basicity properties through a comprehensive methodology of Hammett functions alongside 1H NMR analysis. A correlation was established between the composition, structure and alkalinity of solvents. Furthermore, a strong linear correlation was observed between the Hammett basicity (H-) of solvents and initial CO2 adsorption rate. Machine learning techniques were employed to predict the significant impact of alkaline functional components on alkalinity levels and CO2 capture capacity. This study offers valuable insights into the design, synthesis and structure-function relationship of alkaline DESs.

6.
Angew Chem Int Ed Engl ; 63(6): e202316858, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38095801

RESUMEN

Nanocatalytic tumor therapy based on Fenton nanocatalysts has attracted considerable attention because of its therapeutic specificity, enhanced outcomes, and high biocompatibility. Nevertheless, the rate-determining step in Fenton chemistry, which involves the transition of a high-valence metallic center (FeIII ) to a Fenton-active low-valence metallic center (FeII ), has hindered advances in nanocatalyst-based therapeutics. In this study, we constructed mesoporous single iron atomic nanocatalysts (mSAFe NCs) by employing catechols from dopamine to coordinate and isolate single iron atoms. The catechols also serve as reductive ligands, generating a field-effect-based cocatalytic system that instantly reduces FeIII species to FeII species within the mSAFe NCs. This self-motivated cocatalytic strategy enabled by mSAFe NCs accelerates the kinetics of the Fenton catalytic reaction, resulting in remarkable performance for nanocatalytic tumor therapy both in vitro and in vivo.


Asunto(s)
Compuestos Férricos , Neoplasias , Humanos , Hierro , Neoplasias/tratamiento farmacológico , Compuestos Ferrosos , Catecoles , Peróxido de Hidrógeno , Catálisis
7.
Behav Brain Res ; 461: 114783, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38029845

RESUMEN

In recent years, central precocious puberty (CPP) in children is becoming more common, which seriously affects their physical and psychological health and requires finding a safe and effective treatment method. The aim of this study was to investigate the therapeutic effect of melatonin on CPP. A CPP model was established by subcutaneous injection of 300 micrograms of danazol into 5-day-old female mice, followed by treatment with melatonin and leuprolide. The vaginal opening was checked daily. Mice were weighed, gonads were weighed, gonadal index was calculated, and gonadal development was observed by hematoxylin and eosin (HE) staining. Serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and estradiol (E2) levels were measured by ELISA. By using RT-PCR and Western blotting, the mRNA and protein expression of the hypothalamus Kiss-1, Kiss-1 receptor (Kiss1R), gonadotropin-releasing hormone (GnRH), and pituitary GnRH receptor (GnRHR) were identified. The results showed that melatonin delayed vaginal opening time and reduced body weight, gonadal weight and indices in female CPP mice. Melatonin treatment prevents uterine wall thickening and ovarian luteinization in female CPP mice. Melatonin treatment reduces serum concentrations of FSH, LH, and E2 in female CPP mice. Melatonin suppressed the expressions of Kiss-1, Kiss1R and GnRH in the hypothalamus, and the expression of GnRHR in the pituitary of the female CPP mice. Our results suggest that melatonin can inhibit the hypothalamic-pituitary-gonadal (HPG) axis by down-regulating the Kiss-1/Kiss1R system, thereby treating CPP in female mice.


Asunto(s)
Melatonina , Pubertad Precoz , Humanos , Niño , Femenino , Ratones , Animales , Pubertad Precoz/tratamiento farmacológico , Pubertad Precoz/metabolismo , Melatonina/farmacología , Kisspeptinas/metabolismo , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/farmacología , Hormona Luteinizante/metabolismo , Hormona Luteinizante/uso terapéutico , Hormona Folículo Estimulante/uso terapéutico , Hipotálamo/metabolismo
8.
Sensors (Basel) ; 23(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37177535

RESUMEN

The integrated fast detection technology for electric bikes, riders, helmets, and license plates is of great significance for maintaining traffic safety. YOLOv5 is one of the most advanced single-stage object detection algorithms. However, it is difficult to deploy on embedded systems, such as unmanned aerial vehicles (UAV), with limited memory and computing resources because of high computational load and high memory requirements. In this paper, a lightweight YOLOv5 model (SG-YOLOv5) is proposed for the fast detection of the helmet and license plate of electric bikes, by introducing two mechanisms to improve the original YOLOv5. Firstly, the YOLOv5s backbone network and the Neck part are lightened by combining the two lightweight networks, ShuffleNetv2 and GhostNet, included. Secondly, by adopting an Add-based feature fusion method, the number of parameters and the floating-point operations (FLOPs) are effectively reduced. On this basis, a scene-based non-truth suppression method is proposed to eliminate the interference of pedestrian heads and license plates on parked vehicles, and then the license plates of the riders without helmets can be located through the inclusion relation of the target boxes and can be extracted. To verify the performance of the SG-YOLOv5, the experiments are conducted on a homemade RHNP dataset, which contains four categories: rider, helmet, no-helmet, and license plate. The results show that, the SG-YOLOv5 has the same mean average precision (mAP0.5) as the original; the number of model parameters, the FLOPs, and the model file size are reduced by 90.8%, 80.5%, and 88.8%, respectively. Additionally, the number of frames per second (FPS) is 2.7 times higher than that of the original. Therefore, the proposed SG-YOLOv5 can effectively achieve the purpose of lightweight and improve the detection speed while maintaining great detection accuracy.

9.
Phys Chem Chem Phys ; 25(11): 7917-7926, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36861755

RESUMEN

Layered double hydroxides (LDHs) are excellent catalysts for the oxygen evolution reaction (OER) because of their tunable properties, including chemical composition and structural morphology. An interplay between these adjustable properties and other (including external) factors might not always benefit the OER catalytic activity of LDHs. Therefore, we applied machine learning algorithms to simulate the double-layer capacitance to understand how to design/tune LDHs with targeted catalytic properties. The key factors of solving this task were identified using the Shapley Additive explanation and cerium was identified as an effective element to modify the double-layer capacitance. We also compared different modelling methods to identify the most promising one and the results revealed that binary representation is better than directly applying atom numbers as inputs for chemical compositions. Overpotentials of LDH-based materials as predicted targets were also carefully examined and evaluated, and it turns out that overpotentials can be predicted when measurement conditions about overpotentials are added as features. Finally, to confirm our findings, we reviewed additional experimental literature data and used them to test our machine algorithms to predict LDH properties. This analysis confirmed the very credible and robust generalization ability of our final model capable of achieving accurate results even with a relatively small dataset.

10.
Pest Manag Sci ; 79(1): 163-172, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36111449

RESUMEN

BACKGROUND: Echinochloa crus-galli var. zelayensis is a troublesome weed in rice fields and can be controlled by using quinclorac. However, over-reliance on quinclorac has resulted in resistant (R) barnyardgrass, which differs significantly in its ability to transport quinclorac compared to susceptible (S) barnyardgrass. This study aimed to investigate the underlying mechanisms for this different translocation between R and S barnyardgrass. RESULTS: Larger amount of quinclorac was transferred from shoots to roots in R compared to S barnyardgrass. After 1 day of quinclorac [300 g active ingredient (a.i.) ha-1 ] foliar treatment, its content in shoots of R was 81.92% of that in S barnyardgrass; correspondingly, in roots of R was 1.17 fold of that in S barnyardgrass. RNA-sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) confirmed the expression levels of PIPs belonging to aquaporins (AQPs) in R were higher than in S barnyardgrass, with or without quinclorac treatment. With co-application of quinclorac and AQPs inhibitors [mercury(II) chloride (HgCl2 )] treatment, even though the expression levels of PIPs and the transport rates of quinclorac were both suppressed in R and S barnyardgrass, this process was less pronounced in R than in S barnyardgrass. CONCLUSION: This report provides clear evidence that higher PIPs expression results in rapid quinclorac translocation from shoots to roots and reduces the quinclorac accumulation in the shoot meristems in R barnyardgrass, thus reducing the control efficacy of quinclorac. © 2022 Society of Chemical Industry.


Asunto(s)
Echinochloa , Echinochloa/genética
11.
Brain Sci ; 12(11)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36421874

RESUMEN

In recent years, the age of children entering puberty is getting lower and the incidence of central precocious puberty is increasing. It is known that melatonin plays an increasingly important role in regulating animal reproduction, but the specific role and mechanism of melatonin in regulating the initiation of puberty remain unclear. The purpose of the current study was to investigate the effect of subcutaneous melatonin injection on pubertal development in female mice and its mechanism of action. Female mice that were 22 days old received 1 mg/kg doses of melatonin subcutaneously every day for 10, 15 and 20 days. The vaginal opening was checked daily. Hematoxylin and eosin (HE) stain was used to determine the growth of the uterus and ovaries. Enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of follicle-stimulating hormone (FSH), gonadotropin-inhibiting hormone (GnIH), and gonadotropin-releasing hormone (GnRH) in serum. By using RT-PCR and Western blotting, the mRNA and protein expression of the hypothalamus GnRH, GnIH, Kisspeptin (Kp), Proopiomelanocortin (POMC), Neuropeptide Y (NPY), as well as G protein-coupled receptor 147 (GPR147) were identified. The findings demonstrated that melatonin could suppress ovarian follicle and uterine wall growth as well as delay vaginal opening, decrease serum levels of GnRH and FSH and increase levels of GnIH. Melatonin increased GnIH and GPR147 expression in the hypothalamus in comparison to the saline group, while decreasing the expression of GnRH, Kisspeptin, POMC, and NPY. In conclusion, exogenous melatonin can inhibit the onset of puberty in female mice by modulating the expression of hypothalamic GnRH, GnIH, Kisspeptin, POMC and NPY neurons and suppressing the hypothalamic-pituitary-gonadal axis.

12.
Environ Sci Pollut Res Int ; 29(52): 79579-79593, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35715673

RESUMEN

Rhizosphere microorganisms can greatly affect plant growth, especially the plant growth-promoting rhizobacteria (PGPR), which can improve plant root development and growth because they contain various biological functions including nitrogen fixation, phosphate solubilization, and phytosiderophore production. This study demonstrates that Cyperus rotundus L. is capable of developing and forming complex underground reproductive systems at arbitrary burial depths and cutting modes due to its extremely strong multiplication and regeneration ability. With the densities of C. rotundus increasing, the abundance of PGPR, soil enzymes invertase and urease, the nutrient contents of the field soil, and maize quality were impacted. Notably, more abundance of PGPR-most notably, the nitrogen-fixing microorganisms (NFMs) such as Azospirillum, Burkholderia, Mycobacterium, and Rhizobium-enriches in the rhizosphere of C. rotundus than in that of maize. In addition, the activities of soil enzymes invertase (S_SC) and urease (S_SU) were significantly higher in its rhizosphere than in maize, further proving that more NFMs enrich the C. rotundus rhizosphere. The nutrient contents of the field soil of TN, SOM, and SOC were reduced, indicating that the presence of C. rotundus made the soil infertile. Hence, these pieces of evidence indicate that C. rotundus may drive the field soil infertile as reflected by reduced soil nutrients via altering rhizosphere bacteria community structure.


Asunto(s)
Cyperus , Rizosfera , Suelo/química , Zea mays , Microbiología del Suelo , Ureasa , beta-Fructofuranosidasa , Bacterias , Nitrógeno/análisis , Fosfatos
13.
Chemistry ; 28(8): e202103141, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-34734654

RESUMEN

Traditional regulation methods of active sites have successfully optimized the performance of electrocatalysts, but seem unable to achieve further breakthrough in the catalytic activity. Unlike the conventional viewpoint of focusing on single active site, the concept of local microstructure active zone is more comprehensive and new methods to regulate the reaction zone for electrocatalytic reactions are developed accordingly. The local microstructure active zone refers to the zone with high catalytic activity formed by the interaction between active atoms and neighboring coordination atoms as well as the surrounding environment. Instead of the traditional single active atom site, the active zone is more suitable for the actual electrochemical reaction process. According to this concept, the activity of electrocatalysts can be coordinated by multiple active atoms. This strategy is beneficial for understanding the relationship between material, structure, and catalysis, which realizes the design and synthesis of high-performance electrocatalysts. This review provides the research progress of this strategy for electrocatalytic reactions, with emphasis on their applications in oxygen evolution reaction, urea oxidation reaction, and carbon dioxide reduction.


Asunto(s)
Oxígeno , Urea , Catálisis , Dominio Catalítico , Oxidación-Reducción
14.
Biomaterials ; 278: 121172, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34653935

RESUMEN

Silicon, a highly biocompatible and ubiquitous chemical element in living systems, exhibits great potentials in biomedical applications. However, the silicon-based nanomaterials such as silica and porous silicon have been largely limited to only serving as carriers for delivery systems, due to the lack of intrinsic functionalities of silicon. This work presents the facile construction of a two-dimensional (2D) hydrogen-bonded silicene (H-silicene) nanosystem which is highlighted with tunable bandgap and selective degradability for tumor-specific photodynamic therapy facilely by surface covalent modification of hydrogen atoms. Briefly, the H-silicene nanosheet material is selectively degradable in normal neutral tissues but rather stable in the mildly acidic tumor microenvironment (TME) for achieving efficient photodynamic therapy (PDT). Such a 2D hydrogen-bonded silicene nanosystem featuring the tunable bandgap and tumor-selective degradability provides a new paradigm for the application of multi-functional two-dimensional silicon-based biomaterials towards the diagnosis and treatments of cancer and other diseases.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Hidrógeno , Neoplasias/tratamiento farmacológico , Silicio , Microambiente Tumoral
15.
Adv Mater ; 33(20): e2008065, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33797131

RESUMEN

The innate immune system plays a key role in protecting the human body from tumors, which, unfortunately, is largely counteracted by their immune-suppression function. Such an immune suppression has been reported to be induced by the immunosuppressive microenvironment, including the exhausted cytotoxic T lymphocytes (CTLs) and tumor-promoting M2-polarized macrophages. Here, a novel tumor-immunotherapeutic modality based on the nanocatalytic innate immunity activation by tumor-specific mitochondrial DNA (mtDNA) oxidative damage is proposed. In detail, a nanocatalytic medicine, Fe2+ -Ru2+ -loaded mesoporous silica nanoparticle named as MSN-Ru2+ /Fe2+ (MRF), is constructed to induce oxidative damage in the mtDNA of tumor cells. Such an oxidative mtDNA is able to escape from the tumor cells and acts as an immunogenic damage-associated molecular pattern to M1-polarize tumor-associated macrophages (TAMs), resulting in the reactivated immunoresponse of macrophages against cancer cells, and the subsequent inflammatory response of innate immunity. Most importantly, the treatment strategy based on regulating the innate immune response of TAMs not only stops the primary tumor progression, but also almost completely inhibits the growth of distant tumors in the periods of treatments.


Asunto(s)
Macrófagos , Microambiente Tumoral , Humanos , Nanopartículas , Estrés Oxidativo
16.
Materials (Basel) ; 14(8)2021 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-33920467

RESUMEN

Polytetrafluoroethylene (PTFE)/Al reactive material with different aluminum particle sizes were prepared by molding and sintering, and the effect of aluminum particle size on the impact behavior of PTFE/Al reactive material with a mass ratio of 50:50 was investigated. The results show that aluminum particle size has significant effects on the shock-reduced reaction diffusion, reaction speed, and degree of reaction of the PTFE/Al reactive material. At a moderate strain rate, the reaction delay of PTFE/Al increased, and the reaction duration and degree decreased, with the increase of aluminum particle size. Under the strong impact of explosive loading, aluminum particle size has little effect on the reaction delay, which maintains at about 1.5 µs-2.5 µs, but the reaction durability and degree of reaction of PTFE/Al decrease with increasing aluminum particle size. There is also a strain rate threshold for the shock-induced reaction of PTFE/Al reactive material, which is closely related to aluminum particle size. The shock-induced reaction occurs when the strain rate threshold is exceeded.

17.
Nat Commun ; 12(1): 218, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431882

RESUMEN

Development of organic theranostic agents that are active in the second near-infrared (NIR-II, 1000-1700 nm) biowindow is of vital significance for treating deep-seated tumors. However, studies on organic NIR-II absorbing agents for photo-to-heat energy-converting theranostics are still rare simply because of tedious synthetic routes to construct extended π systems in the NIR-II region. Herein, we design a convenient strategy to engineer highly stable organic NIR-II absorbing theranostic nanoparticles (Nano-BFF) for effective phototheranostic applications via co-assembling first NIR (NIR-I, 650-1000 nm) absorbing boron difluoride formazanate (BFF) dye with a biocompatible polymer, endowing the Nano-BFF with remarkable theranostic performance in the NIR-II region. In vitro and in vivo investigations validate that Nano-BFF can serve as an efficient theranostic agent to achieve photoacoustic imaging guided deep-tissue photonic hyperthermia in the NIR-II biowindow, achieving dramatic inhibition toward orthotopic hepatocellular carcinoma. This work thus provides an insight into the exploration of versatile organic NIR-II absorbing nanoparticles toward future practical applications.


Asunto(s)
Calor , Rayos Infrarrojos , Luz , Compuestos Orgánicos/química , Nanomedicina Teranóstica , Animales , Línea Celular Tumoral , Formazáns/administración & dosificación , Formazáns/farmacocinética , Ratones Endogámicos C57BL , Neoplasias/patología , Neoplasias/terapia , Técnicas Fotoacústicas , Terapia Fototérmica
18.
Small ; 16(23): e1907233, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32406198

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignant tumors with extremely poor prognosis due to the later stage diagnosis when surgical resection is no longer applicable. Alternatively, the traditional gene therapy which drives pancreatic cancer cells into an inactive state and inhibiting the proliferation and metastasis, presents potentials to safely inhibit pancreatic cancer progression, but unfortunately has received limited success to date. Here, an efficient gene therapy of pancreatic cancer is shown via a peptide nucleic acid (PNA)-loaded layered double hydroxides (LDHs) nanoplatform. Compared with the traditional DNA- or RNA-based gene therapies, the gene therapy using PNA features great advantages in recognizing and hybridizing with the target mutant sequences to form PNA-DNA hybrids with significantly enhanced stability due to the absence of electrostatic repulsion, and the constrained flexibility of the polyamide backbone. Moreover, ultrasmall LDHs are engineered to load PNA and the obtained PNA-loaded LDH platform (LDHs/PNA) is capable of efficiently and selectively targeting the intranuclear mutant sequences thanks to the proton sponge effect. Treatments with LDHs/PNA demonstrate markedly inhibited growth of pancreatic cancer xenografts via a cancer cell proliferation suppression mechanism. The results demonstrate the great potentials of LDHs/PNA as a highly promising gene therapy agent for PDAC.


Asunto(s)
Neoplasias Pancreáticas , Ácidos Nucleicos de Péptidos , Terapia Genética , Humanos , Hidróxidos , Neoplasias Pancreáticas/terapia , ARN
19.
ACS Nano ; 14(1): 1033-1044, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31935064

RESUMEN

Cancer immunotherapy shows promising potential in future cancer treatment but unfortunately is clinically unsatisfactory due to the low therapeutic efficacy and the possible severe immunotoxicity. Here we show a combined magnetic hyperthermia therapy (MHT) and checkpoint blockade immunotherapy for both primary tumor ablation and mimetic metastatic tumor inhibition. Monodispersed, high-performance superparamagnetic CoFe2O4@MnFe2O4 nanoparticles were synthesized and used for effective MHT-induced thermal ablation of primary tumors. Simultaneously, numerous tumor-associated antigens were produced to promote the maturation and activation of dendritic cells (DCs) and cytotoxic T cells for effective immunotherapy of distant mimetic metastatic tumors in a tumor-bearing mice model. The combined MHT and checkpoint blockade immunotherapy demonstrate the great potentials in the fight against both primary and metastatic tumors.


Asunto(s)
Neoplasias de la Mama/terapia , Cobalto/farmacología , Compuestos Férricos/farmacología , Hipertermia Inducida , Inmunoterapia , Compuestos de Manganeso/farmacología , Animales , Neoplasias de la Mama/patología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cobalto/química , Femenino , Compuestos Férricos/química , Humanos , Fenómenos Magnéticos , Compuestos de Manganeso/química , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Tamaño de la Partícula , Propiedades de Superficie
20.
RSC Adv ; 10(58): 35381-35388, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-35515662

RESUMEN

A biodegradable linear bio-based polyester of poly(hexylene succinate) was effectively prepared in non-metal sulfonic acid-functionalized Brønsted acidic ionic liquids (SFBAILs) as both the catalyst and the polymerization medium, and the processes of polycondensation and post-polycondensation in SFBAILs were also investigated. In addition, the side reactions which were detrimental to the growth of M w of poly(hexylene succinate) were evaluated and the synthesis mechanism of poly(hexylene succinate) catalyzed by SFBAILs was discussed with the help of DFT calculations. The result shows that both the imidazole ring and the sulfonic group on cations of SFBAILs play an important role in the catalytic process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...