Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 402: 130787, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703955

RESUMEN

Slow dissolution/hydrolysis of insoluble/macromolecular organics and poor sludge filterability restrict the application potential of anaerobic membrane bioreactor (AnMBR). Bubble-free membrane microaeration was firstly proposed to overcome these obstacles in this study. The batch anaerobic digestion tests feeding insoluble starch and soluble peptone with and without microaeration showed that microaeration led to a 65.7-144.8% increase in methane production and increased critical flux of microfiltration membrane via driving the formation of large sludge flocs and the resultant improvement of sludge settleability. The metagenomic and bioinformatic analyses showed that microaeration significantly enriched the functional genes and bacteria for polysaccharide and protein hydrolysis, microaeration showed little negative effects on the functional genes involved in anaerobic metabolisms, and substrate transfer from starch to peptone significantly affected the functional genes and microbial community. This study demonstrates the dual synergism of microaeration to enhance the dissolution/hydrolysis/acidification of insoluble/macromolecular organics and sludge filterability for AnMBR application.


Asunto(s)
Reactores Biológicos , Filtración , Membranas Artificiales , Aguas del Alcantarillado , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Anaerobiosis , Filtración/métodos , Metano/metabolismo , Hidrólisis , Almidón/metabolismo
2.
Membranes (Basel) ; 12(8)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36005725

RESUMEN

It is of great importance to quantitatively characterize feed fouling potential for the effective and efficient prevention and control of reverse osmosis membrane fouling. A gradient filtration method with microfiltration (MF 0.45 µm) → ultrafiltration (UF 100 kDa) → nanofiltration (NF 300 Da) was proposed to extract the cake layer fouling index, I, of different feed foulants in this study. MF, UF, and NF showed high rejection of model suspended solids (kaolin), colloids (sodium alginate and bovine serum albumin), and dissolved organic matters (humic acid) during constant-pressure individual filtration tests, where the cake layer was the dominant fouling mechanism, with I showing a good linear positive correlation with the foulant concentration. MF → UF → NF gradient filtration tests of synthetic wastewater (i.e., model mixture) showed that combined models were more effective than single models to analyze membrane fouling mechanisms. For each membrane of gradient filtration, I showed a positive correlation with the targeted foulant concentration. Therefore, a quantitative assessment method based on MF → UF → NF gradient filtration, the correlation of combined fouling models, and the calculation of I would be useful for characterizing the fouling potentials of different foulants. This method was further successfully applied for characterizing the fouling potential of real wastewater (i.e., sludge supernatant from a membrane bioreactor treating dyeing and finishing wastewater).

3.
Membranes (Basel) ; 11(8)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34436357

RESUMEN

Anaerobically treated swine wastewater contains large amounts of orthophosphate phosphorus, ammonium nitrogen and organic substances with potential nutrients recovery via struvite electrochemical precipitation post-treatment. Lab-scale batch experiments were systematically conducted in this study to investigate the effects of initial pH, current density, organic substances upon nutrients removal, and precipitates quality (characterized by X-ray diffraction, scanning electron microscopy and element analysis via acid dissolution method) during the struvite electrochemical precipitation process. The optimal conditions for the initial pH of 7.0 and current density of 4 mA/cm2 favoured nutrients removal and precipitates quality (struvite purity of up to 94.2%) in the absence of organic substances. By contrast, a more adverse effect on nutrients removal, morphology and purity of precipitates was found by humic acid than by sodium alginate and bovine albumin in the individual presence of organic substances. Low concentration combination of bovine albumin, sodium alginate, and humic acid showed antagonistic inhibition effects, whereas a high concentration combination showed the accelerating inhibition effects. Initial pH adjustment from 7 to 8 could effectively mitigate the adverse effects on struvite electrochemical precipitation under high concentration combined with organic substances (500 mg/L bovine albumin, 500 mg/L sodium alginate, and 1500 mg/L humic acid); this may help improve struvite electrochemical precipitation technology in practical application for nutrients recovery from anaerobically treated swine wastewater.

4.
J Hazard Mater ; 380: 120894, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31325689

RESUMEN

A lab-scale mesophilic anaerobic membrane bioreactor (AnMBR) was used to treat synthetic municipal wastewater with variable concentrations of antibiotic Sulfamethoxazole (SMX) and bulk organics in this study. The removal and biotransformation pathway of SMX in the AnMBR were systematically investigated during a 170 d of operation under hydraulic retention time of 1 d. Average SMX removal was 97.1% under feed SMX of 10-1000 µg/L, decreasing to 91.6 and 88.0% under feed SMX of 10,000 and 100,000 µg/L due to the inhibition effects of high SMX loading rate on anaerobic microorganisms. SMX biotransformation followed pseudo-first order reaction kinetics based on SMX removal independent of feed SMX of 10-1000 µg/L during continuous operation and also in a batch test under initial SMX of 100,000 µg/L. According to the identified 7 transformation products (TPs) by gas chromatography-mass spectrometry, the biotransformation pathway of SMX from municipal wastewater treatment via AnMBR was first proposed to consist of 2 primary routes: 1) Butylbenzenesulfonamide without antibiotic toxicity dominated under feed SMX of 10-100 µg/L; 2) Sulfanilamide with much lower antibiotic toxicity than SMX dominated under feed SMX of 1000-100000 µg/L, further transforming to secondary TPs (4-Aminothiophenol, Aniline, Acetylsulfanilamide) and tertiary TPs (4-Acetylaminothiophenol, Acetylaniline).


Asunto(s)
Antiinfecciosos/aislamiento & purificación , Reactores Biológicos , Biotransformación , Membranas Artificiales , Sulfametoxazol/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Anaerobiosis , Antiinfecciosos/metabolismo , Sulfametoxazol/metabolismo , Contaminantes Químicos del Agua/metabolismo
5.
Bioresour Technol ; 268: 648-657, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30144738

RESUMEN

The removal of 26 organic micropollutants (OMPs) in synthetic municipal wastewater was investigated via the process of aerobic sequential batch reactor (SBR) alone and SBR followed by nanofiltration (NF). SBR-NF performed better than SBR alone, ascribed to the contribution of NF: 1) complete biomass rejection resulted in diverse microbial community and much less fluctuated performance than SBR alone, and 2) direct OMPs rejection (74-98%) increased their retention time in SBR and thus overall removal via biodegradation/transformation and accumulation in SBR. Nine OMPs showed high biological removal (over 60%), 6 OMPs showed moderate biological removal (30-70%) and 10 OMPs showed low biological removal (below 40%). Most readily and moderately biodegradable OMPs contained strong electron donating group. Most refractory OMPs contained strong electron withdrawing group and/or halogen substitute. The batch addition of powdered activated carbon (100 mg/L) into SBR showed short term sorption performance for both OMPs and bulk organics.


Asunto(s)
Carbón Orgánico , Eliminación de Residuos Líquidos , Reactores Biológicos , Aguas Residuales , Contaminantes Químicos del Agua
6.
Bioresour Technol ; 241: 360-368, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28577485

RESUMEN

To investigate anaerobic secondary effluent polishing by microalgae (Chlorella vulgaris) under low light intensity (14µmol/m2/s), bubbling column reactors were operated in batches of 8 d with initial ammonium nitrogen 10-50mg/L, initial phosphate phosphorus 2-10mg/L and microalgal seed 40mg/L. Maximum microalgal biomass and minimum generation time were 370.9mg/L and 2.5d, respectively. Nitrogen removal (maximum 99.6%) was mainly attributed to microalgal growth rate, while phosphorus removal (maximum 49.8%) was related to microalgal growth rate, cell phosphorus content (maximum 1.5%) and initial nutrients ratio. Dissolved microalgal organics release in terms of chemical oxygen demand (maximum 63.2mg/L) and hexane extractable material (i.e., oil and grease, maximum 8.5mg/L) was firstly reported and mainly affected by nitrogen deficiency and deteriorated effluent quality. Ultrafiltration critical flux (16.6-39.5L/m2/h) showed negative linear correlation to microalgal biomass. Anaerobic membrane bioreactor effluent polishing showed similar results with slight inhibition to synthetic effluent.


Asunto(s)
Chlorella vulgaris , Eliminación de Residuos Líquidos , Biomasa , Chlorella , Microalgas , Nitrógeno , Fósforo
7.
Bioresour Technol ; 218: 882-91, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27441825

RESUMEN

Organic micro-pollutants (OMPs) are contaminants of emerging concern in wastewater treatment due to the risk of their proliferation into the environment, but their impact on the biological treatment process is not well understood. The purpose of this study is to examine the effects of the presence of OMPs on the core microbial populations of wastewater treatment. Two nanofiltration-coupled membrane bioreactors (aerobic and anaerobic) were subjected to the same operating conditions while treating synthetic municipal wastewater spiked with OMPs. Microbial community dynamics, gene expression levels, and antibiotic resistance genes were analyzed using molecular-based approaches. Results showed that presence of OMPs in the wastewater feed had a clear effect on keystone bacterial populations in both the aerobic and anaerobic sludge while also significantly impacting biodegradation-associated gene expression levels. Finally, multiple antibiotic-type OMPs were found to have higher removal rates in the anaerobic MBR, while associated antibiotic resistance genes were lower.


Asunto(s)
Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Aguas Residuales/química , Contaminantes del Agua/análisis , Aerobiosis , Anaerobiosis , Bacterias/genética , Membranas Artificiales , Contaminantes del Agua/efectos adversos , Purificación del Agua/métodos
8.
Bioresour Technol ; 166: 326-34, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24926606

RESUMEN

The overall performance of a mesophilic anaerobic membrane bioreactor (AnMBR) for synthetic municipal wastewater treatment was investigated under a range of organic loading rate (OLR). A very steady and high chemical oxygen demand (COD) removal (around 98%) was achieved over a broad range of volumetric OLR of 0.8-10 gCOD/L/d. The sustainable volumetric and sludge OLR satisfying a permeate COD below 50 mg/L for general reuse was 6 gCOD/L/d and 0.63 gCOD/gMLVSS (mixed liquor volatile suspended solids)/d, respectively. At a high sludge OLR of over 0.6 gCOD/gMLVSS/d, the AnMBR achieved high methane production of over 300 ml/gCOD (even approaching the theoretical value of 382 ml/gCOD). A low biomass production of 0.015-0.026 gMLVSS/gCOD and a sustainable flux of 6L/m(2)/h were observed. The integration of a heat pump and forward osmosis into the mesophilic AnMBR process would be a promising way for net energy recovery from typical municipal wastewater in a temperate area.


Asunto(s)
Reactores Biológicos , Conservación de los Recursos Energéticos/métodos , Aguas Residuales/química , Purificación del Agua/métodos , Anaerobiosis , Biocombustibles/análisis , Biomasa , Membranas Artificiales
9.
Water Res ; 45(2): 863-71, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20947121

RESUMEN

The critical flux and chemical cleaning-in-place (CIP) in a long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment were investigated. Steady filtration under high flux (30 L/(m(2) h)) was successfully achieved due to effective membrane fouling control by sub-critical flux operation and chemical CIP with sodium hypochlorite (NaClO) in both trans-membrane pressure (TMP) controlling mode (cleaning with high concentration NaClO of 2000-3000 mg/L in terms of effective chorine was performed when TMP rose to 15 kPa) and time controlling mode (cleanings were performed weekly and monthly respectively with low concentration NaClO (500-1000 mg/L) and high concentration NaClO (3000 mg/L)). Microscopic analysis on membrane fibers before and after high concentration NaClO was also conducted. Images of scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that NaClO CIP could effectively remove gel layer, the dominant fouling under sub-critical flux operation. Porosity measurements indicated that NaClO CIP could partially remove pore blockage fouling. The analyses from fourier transform infrared spectrometry (FTIR) with attenuated total reflectance accessory (ATR) and energy dispersive spectrometer (EDS) demonstrated that protein-like macromolecular organics and inorganics were the important components of the fouling layer. The analysis of effluent quality before and after NaClO CIP showed no obvious effect on effluent quality.


Asunto(s)
Reactores Biológicos , Membranas Artificiales , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Falla de Equipo , Microscopía Electrónica de Rastreo , Proyectos Piloto , Porosidad , Aguas del Alcantarillado/análisis , Hipoclorito de Sodio/química , Eliminación de Residuos Líquidos/instrumentación , Purificación del Agua/instrumentación
10.
Water Sci Technol ; 53(6): 211-20, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16749460

RESUMEN

In an attempt at membrane fouling control, a kind of cylindrical plastic suspended carrier was added in a submerged membrane bioreactor (SMBR) and its effect was investigated in this study. According to the transmembrane pressure (TMP) profiles and the sludge characteristics in comparative runs with and without suspended carriers, it was found that the suspended carriers added in SMBR had two effects on membrane fouling: one was the positive effect of mechanically scouring the membrane surface and the other was the negative effect of breaking up sludge flocs. Sludge particle size distribution change was mainly responsible. It was suggested to apply the suspended carrier at higher MLSS concentration and lower carrier dose based on the consideration for retarding sludge breakage caused by the carrier. The experiment was conducted under higher MLSS (8 gL(-1)) and lower carrier dose (carrier volume/total volume = 10/). The TMP increase was effectively retarded by added suspended carriers compared to the system without addition of the carriers. The effect of suspended carriers on membrane fouling at high MLSS concentration was verified.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Bacterias Aerobias , Biopelículas , Biomasa , Membranas , Tamaño de la Partícula , Presión , Factores de Tiempo , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...