Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 12598, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824219

RESUMEN

To tackle the difficulty of extracting features from one-dimensional spectral signals using traditional spectral analysis, a metabolomics analysis method is proposed to locate two-dimensional correlated spectral feature bands and combine it with deep learning classification for wine origin traceability. Metabolomics analysis was performed on 180 wine samples from 6 different wine regions using UPLC-Q-TOF-MS. Indole, Sulfacetamide, and caffeine were selected as the main differential components. By analyzing the molecular structure of these components and referring to the main functional groups on the infrared spectrum, characteristic band regions with wavelengths in the range of 1000-1400 nm and 1500-1800 nm were selected. Draw two-dimensional correlation spectra (2D-COS) separately, generate synchronous correlation spectra and asynchronous correlation spectra, establish convolutional neural network (CNN) classification models, and achieve the purpose of wine origin traceability. The experimental results demonstrate that combining two segments of two-dimensional characteristic spectra determined by metabolomics screening with convolutional neural networks yields optimal classification results. This validates the effectiveness of using metabolomics screening to determine spectral feature regions in tracing wine origin. This approach effectively removes irrelevant variables while retaining crucial chemical information, enhancing spectral resolution. This integrated approach strengthens the classification model's understanding of samples, significantly increasing accuracy.


Asunto(s)
Aprendizaje Profundo , Metabolómica , Vino , Vino/análisis , Metabolómica/métodos , Redes Neurales de la Computación , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos
2.
Technol Health Care ; 32(2): 809-821, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37458054

RESUMEN

BACKGROUND: Diabetes is a chronic disease that can lead to a variety of complications and even cause death. The signal characteristics of the photoplethysmography signals (PPG) and electrocardiogram signals (ECG) can reflect the autonomic and vascular aspects of the effects of diabetes on the body. OBJECTIVE: Based on the complex mechanism of interaction between PPG and ECG, a set of ensemble empirical mode decomposition-independent component analysis (EEMD-ICA) fusion multi-scale percussion entropy index (MSPEI) method was proposed to analyze cardiovascular function in diabetic patients. METHODS: Firstly, the original signal was decomposed into multiple Intrinsic Mode Function (IMFs) by ensemble empirical mode decomposition EEMD, principal components of IMF were extracted by independent component analysis (ICA), then the extracted principal components were reconstructed to eliminate the complex high and low frequency noise of physiological signals. In addition, the MSPEI was calculated for the ECG R-R interval and PPG amplitude sequence.(RRI and Amp) The results showed that, compared with EEMD method, the SNR of EEMD-ICA method increases from 2.1551 to 11.3642, and the root mean square error (RMSE) decreases from 0.0556 to 0.0067. This algorithm can improve the performance of denoising and retain more feature information. The large and small scale entropy of MSPEI (RRI,Amp) was significantly different between healthy and diabetic patients (p< 0.01). RESULTS: Compared with arteriosclerosis index (AI) and multi-scale cross-approximate entropy (MCAE): MSPEISS (RRI,Amp) indicated that diabetes can affect the activity of human autonomic nervous system, while MSPEILS (RRI,Amp) indicated that diabetes can cause or worsen arteriosclerosis. CONCLUSION: Multi-scale Percussion Entropy algorithm has more advantages in analyzing the influence of diabetes on human cardiovascular and autonomic nervous function.


Asunto(s)
Arteriosclerosis , Diabetes Mellitus , Humanos , Procesamiento de Señales Asistido por Computador , Entropía , Percusión , Algoritmos
3.
Technol Health Care ; 30(6): 1359-1369, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35599519

RESUMEN

BACKGROUND: Arteriosclerosis is one of the diseases that endanger human health. There is a large amount of information in pulse wave signals to reflect the degree of arteriosclerosis. OBJECTIVE: The degree of arteriosclerosis is assessed by analyzing pulse wave signal and calculating multi-scale entropy values. METHODS: A method based on the multiscale cross-approximate entropy of the pulse wave of the human finger is proposed to assess the degree of arteriosclerosis. A total of 86 subjects were divided into three groups. The data of 1000 pulse cycles were selected in the experiment, and the multiscale cross-approximate entropy was calculated for the climb time and pulse wave peak interval. Independent sample t-test analysis gives the small-scale cross-approximate entropy of the two time series of climb time and pulse wave peak interval as p< 0.001 in Groups 1 and 2. The large-scale cross-approximate entropy of the two time series of climb time and pulse wave peak interval is p< 0.017 in Groups 2 and 3. RESULTS: Using the proposed algorithm, the results showed that the small-scale cross-approximate entropy of climb time and pulse wave peak interval could reflect the degree of arteriosclerosis in the human body from the perspective of autonomic nerve function. The large-scale cross-approximate entropy of climb time and pulse wave peak interval confirmed the effect of diabetes on the degree of arteriosclerosis. CONCLUSIONS: The results demonstrate the multiscale cross-approximate entropy is a comprehensive index to evaluate the degree of human arteriosclerosis.


Asunto(s)
Arteriosclerosis , Procesamiento de Señales Asistido por Computador , Humanos , Entropía , Frecuencia Cardíaca/fisiología , Algoritmos
4.
Entropy (Basel) ; 22(7)2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-33286526

RESUMEN

Diabetic peripheral neuropathy (DPN) is a very common neurological disorder in diabetic patients. This study presents a new percussion-based index for predicting DPN by decomposing digital volume pulse (DVP) signals from the fingertip. In this study, 130 subjects (50 individuals 44 to 89 years of age without diabetes and 80 patients 37 to 86 years of age with type 2 diabetes) were enrolled. After baseline measurement and blood tests, 25 diabetic patients developed DPN within the following five years. After removing high-frequency noise in the original DVP signals, the decomposed DVP signals were used for percussion entropy index (PEIDVP) computation. Effects of risk factors on the incidence of DPN in diabetic patients within five years of follow-up were tested using binary logistic regression analysis, controlling for age, waist circumference, low-density lipoprotein cholesterol, and the new index. Multivariate analysis showed that patients who did not develop DPN in the five-year period had higher PEIDVP values than those with DPN, as determined by logistic regression model (PEIDVP: odds ratio 0.913, 95% CI 0.850 to 0.980). This study shows that PEIDVP can be a major protective factor in relation to the studied binary outcome (i.e., DPN or not in diabetic patients five years after baseline measurement).

5.
Diagnostics (Basel) ; 10(1)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936481

RESUMEN

Diabetic peripheral neuropathy (DPN) is one of the most common chronic complications of diabetes. It has become an essential public health crisis, especially for care in the home. Synchronized electrocardiogram (ECG) and photoplethysmography (PPG) signals were obtained from healthy non-diabetic (n = 37) and diabetic (n = 85) subjects without peripheral neuropathy, recruited from the diabetic outpatient clinic. The conventional parameters, including low-/high-frequency power ratio (LHR), small-scale multiscale entropy index (MEISS), large-scale multiscale entropy index (MEILS), electrocardiogram-based pulse wave velocity (PWVmean), and percussion entropy index (PEI), were computed as baseline and were then followed for six years after the initial PEI measurement. Three new diabetic subgroups with different PEI values were identified for the goodness-of-fit test and Cox proportional Hazards model for relative risks analysis. Finally, Cox regression analysis showed that the PEI value was significantly and independently associated with the risk of developing DPN after adjustment for some traditional risk factors for diabetes (relative risks = 4.77, 95% confidence interval = 1.87 to 6.31, p = 0.015). These findings suggest that the PEI is an important risk parameter for new-onset DPN as a result of a chronic complication of diabetes and, thus, a smaller PEI value can provide valid information that may help identify type 2 diabetic patients at a greater risk of future DPN.

6.
Comput Methods Programs Biomed ; 166: 115-121, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30415711

RESUMEN

BACKGROUND AND OBJECTIVES: Multiscale Poincaré (MSP) plots have recently been introduced to facilitate the visualization of time series of physiological signals. This study aimed at investigating the feasibility of MSP application in distinguishing subjects with and without diabetes. METHODS: Using photoplethysmogram (PPG) waveform amplitudes acquired from unilateral fingertip of non-diabetic (n = 34) and diabetic (n = 30) subjects, MSP indices (MSPI) of the two groups were compared using 1000, 500, 250, 100 data points. Data from Poincaré index (short-term variability/long-term variability [i.e. SD1/SD2] ratio, SSR) and multiscale entropy (MSE) were also obtained with the four corresponding data points for comparison. RESULTS: SSR and MSPI were both negatively related to glycated hemoglobin (HbA1c) and fasting blood sugar levels. Significant negative correlation was also noted between MSPI and pulse pressure. When only 500 and 250 data points were included, significant elevations in the non-diabetic group were only noted in MSPI (both p < 0.01). Furthermore, MSPI was significantly higher in non-diabetic than that in diabetic subjects on all scales (i.e., 1-10) but not using MSE when utilizing 1000 data points. CONCLUSIONS: The results demonstrated enhanced sensitivity of MSP in differentiating between non-diabetic and diabetic subjects compared to SSR and MSE, highlighting the feasibility of MSP application in biomedical data analysis to reduce computational time and enhance sensitivity.


Asunto(s)
Diabetes Mellitus/diagnóstico , Diagnóstico por Computador/métodos , Fotopletismografía , Adulto , Anciano , Algoritmos , Presión Sanguínea/fisiología , Entropía , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador , Programas Informáticos , Factores de Tiempo
7.
Sci Rep ; 8(1): 15771, 2018 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-30361528

RESUMEN

To investigate the value of decomposed short-time digital volume pulse (DVP) signals in discerning systemic vascular anomaly in diabetic patients, demographic and anthropometric parameters, serum lipid profile, fasting blood glucose and glycated hemoglobin (HbA1c) levels were obtained from 29 healthy adults (Group 1) and 29 age-matched type 2 diabetes mellitus patients (Group 2). Six-second DVP signals from right index finger acquired through photoplethysmography were decomposed using ensemble empirical mode decomposition. Using one intrinsic mode function (IMF5), stiffness index (SI) and instantaneous energy of maximal energy (fEmax) were obtained. Other indicators of arterial stiffness, including electrocardiogram-pulse wave velocity of foot (ECG-PWVfoot), crest time (CT) and crest time ratio (CTR), were obtained from the testing subjects for comparison. The mean body weight, body mass index, waist circumference, HbA1c and fasting blood sugar levels were higher in Group 2 than those in Group 1, whereas values of systolic and diastolic blood pressure were lower in Group 2 than those in Group 1. SI and fEmax were significantly higher in Group 2 than those in Group 1. Moreover, fEmax was positively associated with HbA1c concentration, CT and SI in Group 2 (p < 0.05) but not in Group 1. When all subjects were considered, fEmax was highly significantly associated with HbA1c and fasting blood sugar levels, and SI (all p < 0.001). After Hilbert-Huang transformation, short-time DVP signals could give significant information on arterial stiffness and vascular anomaly in diabetic patients.


Asunto(s)
Algoritmos , Diabetes Mellitus Tipo 2/fisiopatología , Pulso Arterial , Rigidez Vascular/fisiología , Adulto , Aterosclerosis/etiología , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo
8.
Entropy (Basel) ; 20(7)2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-33265587

RESUMEN

The present study aimed at testing the hypothesis that application of multiscale cross-approximate entropy (MCAE) analysis in the study of nonlinear coupling behavior of two synchronized time series of different natures [i.e., R-R interval (RRI) and crest time (CT, the time interval from foot to peakof a pulse wave)] could yield information on complexity related to diabetes-associated vascular changes. Signals of a single waveform parameter (i.e., CT) from photoplethysmography and RRI from electrocardiogram were simultaneously acquired within a period of one thousand cardiac cycles for the computation of different multiscale entropy indices from healthy young adults (n = 22) (Group 1), upper-middle aged non-diabetic subjects (n = 34) (Group 2) and diabetic patients (n = 34) (Group 3). The demographic (i.e., age), anthropometric (i.e., body height, body weight, waist circumference, body-mass index), hemodynamic (i.e., systolic and diastolic blood pressures), and serum biochemical (i.e., high- and low-density lipoprotein cholesterol, total cholesterol, and triglyceride) parameters were compared with different multiscale entropy indices including small- and large-scale multiscale entropy indices for CT and RRI [MEISS(CT), MEILS(CT), MEISS(RRI), MEILS(RRI), respectively] as well as small- and large-scale multiscale cross-approximate entropy indices [MCEISS, MCEILS, respectively]. The results demonstrated that both MEILS(RRI) and MCEILS significantly differentiated between Group 2 and Group 3 (all p < 0.017). Multivariate linear regression analysis showed significant associations of MEILS(RRI) and MCEILS(RRI,CT) with age and glycated hemoglobin level (all p < 0.017). The findings highlight the successful application of a novel multiscale cross-approximate entropy index in non-invasively identifying diabetes-associated subtle changes in vascular functional integrity, which is of clinical importance in preventive medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...