Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(20): 33679-33703, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37859143

RESUMEN

All roads lead to Rome. In this article we propose a novel theoretical framework to demonstrate vector beams whose degree of polarization does not change on atmospheric propagation. Inspired by the Fresnel equations, we derive the reflected and refracted field of vector beams propagating through a phase screen by employing the continuity of electromagnetic field. We generalize the conventional split-step beam propagation method by considering the vectorial properties in the vacuum diffraction and the refractive properties of a single phase screen. Based on this vectorial propagation model, we extensively calculate the change of degree of polarization (DOP) of vector beams under different beam parameters and turbulence parameters both in free-space and satellite-mediated links. Our result is that whatever in the free-space or satellite-mediated regime, the change of DOP mainly fluctuates around the order of 10-13 to 10-6, which is almost negligible.

2.
Foods ; 12(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37509751

RESUMEN

Five volatile thiol compounds (methanethiol, ethanethiol, 2-mercapto-1-ethanol, 2-furfurylthiol, and 2-methyl-3-furanethiol) in fermented grains of sauce-aroma baijiu were determined using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The samples were pre-treated using a modified QuEChERS method. 4,4'-Dithiodipyridine (DTDP) derivatization reaction improved the detectability and stability of volatile thiol compounds. From the end of the first round to the end of the seventh round of fermentation and different fermentation states from the fifth round of fermented grains of the sauce-aroma baijiu production process were analyzed. The results showed that the concentrations of methanethiol (67.64-205.37 µg/kg), ethanethiol (1.22-1.76 µg/kg), 2-furfurylthiol (0.51-3.03 µg/kg), and 2-methyl-3-furanthiol (1.70-12.74 µg/kg) were increased with the number of fermentation rounds. Methanethiol, 2-furfurylthiol, and 2-methyl-3-furanthiol increased during fermentation and distillation in the fifth round. Fermentation and distillation were important stages for their widespread production. After distillation, there were still a large number of volatile thiol compounds in the fermented grains. The thermal reaction was of great significance in the formation of these thiols.

3.
Appl Opt ; 59(7): 2057-2064, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32225727

RESUMEN

This study reports an internal mixed particle model of dust and nitrate aerosols using the actual haze condition. We performed accurate calculations of linear depolarization ratios (LDR) of nitrate-coated mineral dust particles at three wavelengths (0.35, 0.53, and 1.06 µm) using the T-matrix method. The LDRs of the mono-disperse aerosol particles evolve differently as expressions in the Rayleigh and Mie domains. In the Rayleigh domain, the LDRs increase with the core-shell ratio and the aspect ratio and decrease when the wavelength increases. The forward and backward LDRs depend more on aspect ratio than on the core-shell ratio. In the Mie domain, the LDRs overall increase with the core-shell ratio and the aspect ratio, but there is no significant regular change. When the wavelength increases, the gradual change can be explained by the size parameter of the particles in the vicinity of the Rayleigh domain. For poly-disperse particles, the core-shell ratio mainly affects the position of the side-scattering peak, whereas aspect ratio affects the LDRs. The backscattering LDRs depend more on the variation of aspect ratio, and the core-shell ratio only affects LDRs in a small range. Furthermore, our results on the LDRs are highly promising for remote sensing of the non-spherical and inhomogeneous properties of fine aerosols compared with AERONET measurements. Our results provide a comprehensive understanding of the LDR evolution for coated non-spherical particles in a haze atmosphere. The LDRs can be used as an empirical reference for remote sensing to distinguish coated non-spherical particles.

4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(5): 1208-13, 2015 May.
Artículo en Chino | MEDLINE | ID: mdl-26415429

RESUMEN

A study was carried out to retrieve optical thickness and cloud top height of cirrus clouds from the Atmospheric Infrared Sounder (AIRS) high spectral resolution data in 1070~1135 cm-1 IR band using a Combined Atmospheric Radiative Transfer model (CART) by brightness temperature difference between model simulation and AIRS observation. The research is based on AIRS LIB high spectral infrared observation data combined with Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product data. Brightness temperature spectra based, on the retrieved cirrus optical thickness and cloud top height were simulated and compared with brightness temperature spectra of AIRS observation in the 650~1150 cm-1 band. The cirrus optical thickness and cloud top height retrieved were compared with brightness temperature of AIRS for channel 760 (900.56 cm-1, 11. 1 µm) and cirrus reflectance of MODIS cloud product. And cloud top height retrieved was compared with cloud top height from MODIS. Results show that the brightness temperature spectra simulated were basically consistent with AIRS observation under the condition of retrieval in the 650~1150 cm-1 band. It means that CART can be used to simulate AIRS brightness temperature spectra. The retrieved cirrus parameters are consistent with brightness temperature of AIRS for channel 11. 1 µm with low brightness temperature corresponding to large cirrus optical thickness and high cloud top height. And the retrieved cirrus parameters are consistent with cirrus reflectance of MODIS cloud product with high cirrus reflectance corresponding to large cirrus optical thickness and high cloud top height. Correlation coefficient of brightness temperature between retrieved cloud top height and MODIS cloud top height was relatively high. They are mostly located in the range of 8. 5~11.5 km, and their probability distribution trend is approximately identical. CART model is feasible to retrieve cirrus properties, and the retrieval is reliable.

5.
Opt Lett ; 40(16): 3842-5, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26274674

RESUMEN

This Letter formulates a simple yet accurate radiative-transfer-based theoretical model to characterize the fraction of radiation reflected by terrestrial surfaces. Emphasis is placed on the concept of inhomogeneous distribution of the diffuse sky radiation function (DSRF) and multiple interaction effects (MIE). Neglecting DSRF and MIE produces a -1.55% mean relative bias in albedo estimates. The presented model can elucidate the impact of DSRF on the surface volume scattering and geometry-optical scattering components, respectively, especially for slant illuminations with solar zenith angles (SZA) larger than 50°. Particularly striking in the comparisons between our model and ground-based observations is the achievement of the agreement level, indicating that our model can effectively resolve the longstanding issue in accurately estimating albedo at extremely large SZAs and is promising for land-atmosphere interactions studies.

6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(7): 1739-43, 2013 Jul.
Artículo en Chino | MEDLINE | ID: mdl-24059165

RESUMEN

The global occurrence of cirrus clouds can reach as high as 30%, whose scattering properties are essential impact on the climatic model, radiative transfer, and remote sensing. Their scattering properties are determined by the ice crystal shape, size distribution, refractive index and so on. Retrieval of the backscattering color ratios of cirrus cloud using a 355, 532 and 1 064 nm three-wavelength lidar, combined with the simulation of the three backscattering color ratios of different ice crystal shape, the shape of the lidar-measured ice crystal can be estimated. The results indicate that the shape of cirrus cloud over Hefei city is mostly composed by aggregates.

7.
Opt Express ; 21(3): 2531-7, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23481711

RESUMEN

The spatial-temporal distribution of dust aerosol is important in climate model and ecological environment. An observation experiment of the aerosol vertical distribution in the low troposphere was made using the micro-pulse lidar system from Sept. 2008 to Aug. 2009 at the oasis city Kashgar, China, which is near the major dust source area of the Taklimakan desert. The monthly averaged temporal variation of aerosol extinction profiles are given in the paper. The profile of aerosol extinction coefficient suggested that the dust aerosol could be vertically transported from the ground level to the higher altitude of above 5 km around the source region, and the temporal distribution showed that the dust aerosol layer of a few hundred meters thick appeared in the seasons of early spring and summer near the ground surface.


Asunto(s)
Aerosoles/análisis , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , Interpretación Estadística de Datos , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/estadística & datos numéricos , Rayos Láser , China , Monitoreo del Ambiente/instrumentación , Análisis Espacio-Temporal
8.
Huan Jing Ke Xue ; 29(3): 562-8, 2008 Mar.
Artículo en Chino | MEDLINE | ID: mdl-18649508

RESUMEN

The parameters of AML-2 mobile lidar were introduced, which was based on differential absorption principle and designed by our institute. In Yufa of Beijing, the pollutants including O3, NO2, SO2 in atmospheric boundary layer were monitored in August and September of 2006 under different weather conditions. Vertical profile and diurnal variation of concentrations of these pollutants were analyzed. If without the influence of pollution air transport from south region, the concentrations of these pollutants are low under the overcast weather condition. The concentrations of O3 and NO2 decrease with altitude, and this characteristic is not obvious for SO2, but there is a high concentration layer of SO2 near ground (about 0.6km). The quality of atmosphere Beijing is influenced significantly by air transportation from south region, and the altitude of the severe pollution air transport is about 1km to 1.5km in August 23rd to 25th. As a result, the characteristics of vertical profile and daily variation of the pollutants are changed, and the concentrations of O3, NO2, SO2 in atmospheric boundary layer of Yufa area increased obviously.


Asunto(s)
Contaminantes Atmosféricos/análisis , Atmósfera/análisis , Monitoreo del Ambiente/métodos , Dióxido de Nitrógeno/análisis , Movimientos del Aire , China , Ozono/análisis , Dióxido de Azufre/análisis
9.
Opt Express ; 15(8): 5227-36, 2007 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-19532774

RESUMEN

An iterative algorithm is presented in this study for simultaneous determination of both the aerosol optical thickness and the exponent of the Junge power law from the total reflectance data of two satellite-based, near-infrared bands over the ocean. The atmospheric aerosol model is assumed as the Junge power-law size distribution in retrieval of the data. Numerical simulations show that relative errors in retrieval of the aerosol optical thickness and the exponent of the Junge power law are less than 5% when the actual atmospheric aerosol follows the Junge power-law size distribution. For other aerosol size distributions, relative errors of the aerosol optical thickness are less than approximately 10%. The proposed method is applied to a case study of the data of two near-infrared channels of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) over the East China Sea area. The results show that reasonable spatial distribution of the exponent of the Junge law and the aerosol optical thickness may be obtained on a pixel-by-pixel basis through use of the proposed retrieval algorithm.

10.
Opt Express ; 15(13): 8360-70, 2007 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-19547166

RESUMEN

A fast narrowband transmittance model, referred to as the Fast Fitting Transmittance Model (FFTM), is developed based on rigorous line-by- line (LBL) calculations. Specifically, monochromatic transmittances are first computed from a LBL model in a spectral region from 1 to 25000 cm(-1) for various pressures and temperatures ranging from 0.05 hPa to 1100 hPa and from 200 K to 320 K, respectively. Subsequently, the monochromatic transmittances are averaged over a spectral interval of 1 cm(-1) to obtain narrowband transmittances that are then fitted to various values of absorber amount. A database of fitting coefficients is then created that can be used to compute narrowband transmittances for an arbitrary atmospheric profile. To apply the FFTM to an inhomogeneous atmosphere, the Curtis-Godson (CG) approximation is employed to obtain the weighted effective coefficients. The present method is validated against the LBLRTM and also compared with the high-spectral-resolution measurements acquired by the Atmospheric Infrared Sounder (AIRS) and High-resolution Interferometer Sounder (HIS). With a spectral resolution of 1 cm(-1) and a wide spectral coverage, the FFTM offers a unique combination of numerical efficiency and considerable accuracy for computing moderate- to high-spectral-resolution transmittances involved in radiative transfer simulations and remote sensing applications.

11.
Appl Opt ; 44(26): 5512-23, 2005 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-16161667

RESUMEN

The single-scattering properties of ice particles in the near- through far-infrared spectral region are computed from a composite method that is based on a combination of the finite-difference time-domain technique, the T-matrix method, an improved geometrical-optics method, and Lorenz-Mie theory. Seven nonspherical ice crystal habits (aggregates, hexagonal solid and hollow columns, hexagonal plates, bullet rosettes, spheroids, and droxtals) are considered. A database of the single-scattering properties for each of these ice particles has been developed at 49 wavelengths between 3 and 100 microm and for particle sizes ranging from 2 to 10,000 microm specified in terms of the particle maximum dimension. The spectral variations of the single-scattering properties are discussed, as well as their dependence on the particle maximum dimension and effective particle size. The comparisons show that the assumption of spherical ice particles in the near-IR through far-IR region is generally not optimal for radiative transfer computation. Furthermore, a parameterization of the bulk optical properties is developed for mid-latitude cirrus clouds based on a set of 21 particle size distributions obtained from various field campaigns.

12.
Appl Opt ; 42(21): 4389-95, 2003 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-12921290

RESUMEN

The Mueller matrix (M) corresponding to the phase matrix in the backscattering region (scattering angles ranging from 175 degrees to 180 degrees) is investigated for light scattering at a 0.532-microm wavelength by hexagonal ice crystals, ice spheres, and water droplets. For hexagonal ice crystals we assume three aspect ratios (plates, compact columns, and columns). It is shown that the contour patterns of the backscattering Mueller matrix elements other than M11, M44, M14, and M41 depend on particle geometry; M22 and M33 are particularly sensitive to the aspect ratio of ice crystals. The Mueller matrix for spherical ice particles is different from those for nonspherical ice particles. In addition to discriminating between spherical and nonspherical particles, the Mueller matrix may offer some insight as to cloud thermodynamic phase. The contour patterns for large ice spheres with an effective size of 100 microm are substantially different from those associated with small water droplets with an effective size of 4 microm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA