Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.514
Filtrar
1.
ISME J ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747389

RESUMEN

Spillovers of viruses into human occur more frequently under warmer conditions, particularly arboviruses. The invasive tick species Haemaphysalis longicornis poses a significant public health threat due to its global expansion and its potential to carry a wide range of pathogens. We analyzed meta-transcriptomic data from 3595 adult H. longicornis ticks collected between 2016 and 2019 in 22 provinces across China, encompassing diverse ecological conditions. Generalized additive modelling revealed that climate factors exerted a stronger influence on the virome of H. longicornis compared to other ecological factors, such as ecotypes, distance to coastline, animal host, tick gender, and anti-viral immunity. We investigated the mechanistic understanding of how climate changes drive the tick virome using causality inference and emphasized its significance for public health. Our findings demonstrated that higher temperatures and lower relative humidity/precipitation contribute to variations in animal host diversity, leading to an increased diversity of tick virome, particularly the evenness of vertebrate associated viruses. This finding may explain the evolution of tick-borne viruses into generalists across multiple hosts, thereby increasing the probability of spillover events involving tick-borne pathogens. Deep learning projections indicate that the diversity of H. longicornis virome is expected to increase in 81.9% of regions under the SSP8.5 scenario from 2019-2030. Extension of surveillance should be implemented to avert the spread of tick-borne diseases.

2.
J Agric Food Chem ; 72(19): 10970-10980, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38708787

RESUMEN

Eleven alkaloids (1-11) including seven new ones, 1-7, were isolated from the solid fermentation of Aspergillus fumigatus VDL36, an endophytic fungus isolated from the leaves of Vaccinium dunalianum Wight (Ericaceae), a perennial evergreen shrub distributed across the Southwest regions of China, Myanmar, and Vietnam. Their structures were elucidated on the basis of extensive spectroscopic methods. The isolates were evaluated for in vitro antifungal activities against five phytopathogenic fungi (Fusarium oxysporum, Coriolus versicolor, Fusarium solani, Botrytis cinerea, Fusarium graminearum). As a result, the new compounds fumigaclavine I (1), 13-ethoxycyclotryprostatin A (5), 13-dehydroxycyclotryprostatin A (6), and 12ß-hydroxy-13-oxofumitremorgin C (7) exhibited antifungal activities with MIC values of 7.8-62.5 µg/mL which were comparable to the two positive controls ketoconazole (MIC = 7.8-31.25 µg/mL) and carbendazim (MIC = 1.95-7.8 µg/mL). Furthermore, compounds 1 and 5 demonstrated potent protective and curative effects against the tomato gray mold in vivo. Preliminary structure-activity relationships of the tested indole diketopiperazine alkaloids indicate that the introduction of a substituent group at position C-13 enhances their biological activities.


Asunto(s)
Alcaloides , Aspergillus fumigatus , Endófitos , Alcaloides/farmacología , Alcaloides/química , Aspergillus fumigatus/efectos de los fármacos , Endófitos/química , Estructura Molecular , Fusarium/efectos de los fármacos , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Hojas de la Planta/microbiología , Hojas de la Planta/química , Pruebas de Sensibilidad Microbiana , China , Enfermedades de las Plantas/microbiología
3.
Postgrad Med J ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767468

RESUMEN

For metastatic prostate cancer, androgen deprivation therapy (ADT) is the key strategy to control the disease. However, after 18-24 months of treatment, most patients will progress from metastatic hormone-sensitive prostate cancer (mHSPC) to metastatic castration-resistant prostate cancer (mCRPC) even with ADT. Once patients enter into mCRPC, they face with significant declines in quality of life and a dramatically reduced survival period. Thus, doublet therapy, which combines ADT with new hormone therapy (NHT) or ADT with docetaxel chemotherapy, substitutes ADT alone and has become the "gold standard" for the treatment of mHSPC. In recent years, triplet therapy, which combines ADT with NHT and docetaxel chemotherapy, has also achieved impressive effects in mHSPC. This article provides a comprehensive review of the recent applications of the triplet therapy in the field of mHSPC.

4.
Food Funct ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738338

RESUMEN

Non-digestible oligosaccharides have attracted attention due to their critical role in maintaining the balance of a host's gut microbiota. Lactiplantibacillus plantarum ZDY2013 was isolated from traditional fermented acid beans, which could metabolize many complex carbohydrates and had intestinal immunomodulatory effects. In our study, the ameliorative effect of a combination of non-digestible isomaltooligosaccharide (IMO) and L. plantarum ZDY2013 was investigated in dextran sulfate sodium (DSS)-induced colitis mice. The results showed that IMO could specifically promote L. plantarum ZDY2013 intestinal colonization after five days of gavage and ameliorate the symptoms of colitis (survival rate, DAI score, colon length, etc.) as well as colon tissue integrity. IMO combined with L. plantarum ZDY2013 increased the levels of intestinal tight junction proteins (ZO-1 and claudin) and mucin (MUC-2), followed by alleviation of inflammatory responses (decreased the expression of IL-1ß, TNF-α, and IL-6 and increased the expression of IL-10 and IL-22) and the level of oxidative stress (decreased the level of COX-2 and iNOS and increased the expression of T-AOC and SOD). Furthermore, the combination increased the diversity of the gut microbiota and modulated the microbial structural component (decreased the abundance of Escherichia and Helicobacter and increased the abundance of Lactobacillus and SCFA-producing related species). Taken together, our results suggested that the consumption of IMO and L. plantarum ZDY2013 could improve the symptoms of colitis in mice by improving the intestinal barrier along with regulating the composition and metabolites of the gut microbiota.

5.
ACS Omega ; 9(19): 21426-21439, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38764617

RESUMEN

Curcuma aromatica Salisb (Cur), a well-known herbal medicine, has a wide spectrum of anti-inflammatory, anticarcinogenic, and antioxidant activities. However, the roles of its active compounds and potential mechanisms in colorectal cancer remain unknown. This research utilized network pharmacology and experimental validation to explore the possible mechanisms by which Cur protects against colorectal cancer. The active compounds of Cur and related genes for colorectal cancer were obtained from public databases. The DrugBank database was used to search for anticolorectal cancer drugs licensed through the FDA and their targets, and a "drug-component-target" relationship network was created using the Cytoscape program. The String database produced the PPI network. The ability of these active ingredients to bind to core targets was confirmed by molecular docking using AutoDock Vina. Cell and animal experiments were then carried out. A total of 274 targets were obtained from Cur, 49 of which were potential therapeutic targets. Four key targets, PTGS2, AKT1, TP53, and estrogen receptor 1 (ESR1), were screened via the PPI network and the FDA drug-target network. Molecular docking results revealed that Cur had strong binding abilities to these targets. In vivo and in vitro experiments demonstrated that Cur suppressed the development of colorectal cancer by regulating its targets (PTGS2, AKT1, TP53, and ESR1), which play crucial roles in promoting apoptosis and suppressing cell proliferation, migration, and invasion. Collectively, Cur protects against colorectal cancer by regulating the AKT1/PTGS2/ESR1 and P53 pathways, which lays the groundwork for further research and clinical applications of Cur in colorectal cancer therapy.

6.
World J Gastrointest Oncol ; 16(5): 2018-2037, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38764813

RESUMEN

BACKGROUND: Gastric cancer (GC) is a common malignancy of the digestive system. According to global 2018 cancer data, GC has the fifth-highest incidence and the third-highest fatality rate among malignant tumors. More than 60% of GC are linked to infection with Helicobacter pylori (H. pylori), a gram-negative, active, microaerophilic, and helical bacterium. This parasite induces GC by producing toxic factors, such as cytotoxin-related gene A, vacuolar cytotoxin A, and outer membrane proteins. Ferroptosis, or iron-dependent programmed cell death, has been linked to GC, although there has been little research on the link between H. pylori infection-related GC and ferroptosis. AIM: To identify coregulated differentially expressed genes among ferroptosis-related genes (FRGs) in GC patients and develop a ferroptosis-related prognostic model with discrimination ability. METHODS: Gene expression profiles of GC patients and those with H. pylori-associated GC were obtained from The Cancer Genome Atlas and Gene Expression Omnibus (GEO) databases. The FRGs were acquired from the FerrDb database. A ferroptosis-related gene prognostic index (FRGPI) was created using least absolute shrinkage and selection operator-Cox regression. The predictive ability of the FRGPI was validated in the GEO cohort. Finally, we verified the expression of the hub genes and the activity of the ferroptosis inducer FIN56 in GC cell lines and tissues. RESULTS: Four hub genes were identified (NOX4, MTCH1, GABARAPL2, and SLC2A3) and shown to accurately predict GC and H. pylori-associated GC. The FRGPI based on the hub genes could independently predict GC patient survival; GC patients in the high-risk group had considerably worse overall survival than did those in the low-risk group. The FRGPI was a significant predictor of GC prognosis and was strongly correlated with disease progression. Moreover, the gene expression levels of common immune checkpoint proteins dramatically increased in the high-risk subgroup of the FRGPI cohort. The hub genes were also confirmed to be highly overexpressed in GC cell lines and tissues and were found to be primarily localized at the cell membrane. The ferroptosis inducer FIN56 inhibited GC cell proliferation in a dose-dependent manner. CONCLUSION: In this study, we developed a predictive model based on four FRGs that can accurately predict the prognosis of GC patients and the efficacy of immunotherapy in this population.

7.
World J Gastrointest Oncol ; 16(5): 1869-1877, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38764842

RESUMEN

BACKGROUND: Paradoxically, patients with T4N0M0 (stage II, no lymph node metastasis) colon cancer have a worse prognosis than those with T2N1-2M0 (stage III). However, no previous report has addressed this issue. AIM: To screen prognostic risk factors for T4N0M0 colon cancer and construct a prognostic nomogram model for these patients. METHODS: Two hundred patients with T4N0M0 colon cancer were treated at Tianjin Medical University General Hospital between January 2017 and December 2021, of which 112 patients were assigned to the training cohort, and the remaining 88 patients were assigned to the validation cohort. Differences between the training and validation groups were analyzed. The training cohort was subjected to multivariate analysis to select prognostic risk factors for T4N0M0 colon cancer, followed by the construction of a nomogram model. RESULTS: The 3-year overall survival (OS) rates were 86.2% and 74.4% for the training and validation cohorts, respectively. Enterostomy (P = 0.000), T stage (P = 0.001), right hemicolon (P = 0.025), irregular review (P = 0.040), and carbohydrate antigen 199 (CA199) (P = 0.011) were independent risk factors of OS in patients with T4N0M0 colon cancer. A nomogram model with good concordance and accuracy was constructed. CONCLUSION: Enterostomy, T stage, right hemicolon, irregular review, and CA199 were independent risk factors for OS in patients with T4N0M0 colon cancer. The nomogram model exhibited good agreement and accuracy.

8.
Int J Ophthalmol ; 17(5): 940-950, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766336

RESUMEN

AIM: To gain insights into the global research hotspots and trends of myopia. METHODS: Articles were downloaded from January 1, 2013 to December 31, 2022 from the Science Core Database website and were mainly statistically analyzed by bibliometrics software. RESULTS: A total of 444 institutions in 87 countries published 4124 articles. Between 2013 and 2022, China had the highest number of publications (n=1865) and the highest H-index (61). Sun Yat-sen University had the highest number of publications (n=229) and the highest H-index (33). Ophthalmology is the main category in related journals. Citations from 2020 to 2022 highlight keywords of options and reference, child health (pediatrics), myopic traction mechanism, public health, and machine learning, which represent research frontiers. CONCLUSION: Myopia has become a hot research field. China and Chinese institutions have the strongest academic influence in the field from 2013 to 2022. The main driver of myopic research is still medical or ophthalmologists. This study highlights the importance of public health in addressing the global rise in myopia, especially its impact on children's health. At present, a unified theoretical system is still needed. Accurate surgical and therapeutic solutions must be proposed for people with different characteristics to manage and intervene refractive errors. In addition, the benefits of artificial intelligence (AI) models are also reflected in disease monitoring and prediction.

9.
Chem Commun (Camb) ; 60(42): 5546-5549, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38700121

RESUMEN

Airborne nanoplastics can enter alveolar cells and trigger intracellular oxidative stress primarily. Herein, taking advantage of the high electrochemical resolution of SiC@Pt nanoelectrodes, we achieved the quantitative discrimination of the major ROS/RNS within A549 cells, disclosed the sources of their precursors, and observed that the NO (RNS precursor) level significantly increased, whereas O2˙- (ROS precursor) remained relatively stable during the nanoplastics exposure. This establishes that iNOS or mitochondrion-targeted treatment may be a preventive or therapeutic strategy for nanoplastic-induced lung injury.


Asunto(s)
Técnicas Electroquímicas , Especies de Nitrógeno Reactivo , Especies Reactivas de Oxígeno , Humanos , Especies Reactivas de Oxígeno/metabolismo , Células A549 , Especies de Nitrógeno Reactivo/metabolismo , Estrés Oxidativo/efectos de los fármacos , Electrodos
10.
Analyst ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757525

RESUMEN

ATP plays a crucial role in cell energy supply, so the quantification of intracellular ATP levels is particularly important for understanding many physio-pathological processes. The intracellular quantification of this non-electroactive molecule can be realized using aptamer-modified nanoelectrodes, but is hindered by the limited quantity of modification and electroactive tags on the nanosized electrodes. Herein, we developed a simple but effective electrochemical signal amplification strategy for intracellular ATP detection, which replaces the regular ATP aptamer-linked ferrocene monomer with a polymer, thus greatly magnifying the amounts of electrochemical reporters linked to one chain of the aptamer and enhancing the signals. This ferrocene polymer-ATP aptamer was further immobilized onto Au nanowire electrodes (SiC@C@Au NWEs) to achieve accurate quantification of intracellular ATP in single cells, presenting high electrochemical signal output and high specificity. This work not only provides a powerful tool for quantifying intracellular ATP but also offers a simple and versatile strategy for electrochemical signal amplification in the detection of broader non-electroactive molecules involved in different kinds of intracellular physiological processes.

11.
Reprod Domest Anim ; 59(5): e14596, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38757656

RESUMEN

Chlorogenic acid (CGA) is an effective phenolic antioxidant that can scavenge hydroxyl radicals and superoxide anions. Herein, the protective effects and mechanisms leading to CGA-induced porcine parthenogenetic activation (PA) in early-stage embryos were investigated. Our results showed that 50 µM CGA treatment during the in vitro culture (IVC) period significantly increased the cleavage and blastocyst formation rates and improved the blastocyst quality of porcine early-stage embryos derived from PAs. Then, genes related to zygotic genome activation (ZGA) were identified and investigated, revealing that CGA can promote ZGA in porcine PA early-stage embryos. Further analysis revealed that CGA treatment during the IVC period decreased the abundance of reactive oxygen species (ROS), increased the abundance of glutathione and enhanced the activity of catalase and superoxide dismutase in porcine PA early-stage embryos. Mitochondrial function analysis revealed that CGA increased mitochondrial membrane potential and ATP levels and upregulated the mitochondrial homeostasis-related gene NRF-1 in porcine PA early-stage embryos. In summary, our results suggest that CGA treatment during the IVC period helps porcine PA early-stage embryos by regulating oxidative stress and improving mitochondrial function.


Asunto(s)
Ácido Clorogénico , Técnicas de Cultivo de Embriones , Desarrollo Embrionario , Mitocondrias , Estrés Oxidativo , Partenogénesis , Especies Reactivas de Oxígeno , Animales , Estrés Oxidativo/efectos de los fármacos , Partenogénesis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Técnicas de Cultivo de Embriones/veterinaria , Ácido Clorogénico/farmacología , Desarrollo Embrionario/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Blastocisto/efectos de los fármacos , Porcinos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Antioxidantes/farmacología , Femenino , Glutatión/metabolismo
12.
Br J Pharmacol ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698737

RESUMEN

BACKGROUND AND PURPOSE: Activation of the renin-angiotensin system, as a hallmark of hypertension and chronic kidney diseases (CKD) is the key pathophysiological factor contributing to the progression of tubulointerstitial fibrosis. LIM and senescent cell antigen-like domains protein 1 (LIMS1) plays an essential role in controlling of cell behaviour through the formation of complexes with other proteins. Here, the function and regulation of LIMS1 in angiotensin II (Ang II)-induced hypertension and tubulointerstitial fibrosis was investigated. EXPERIMENTAL APPROACH: C57BL/6 mice were treated with Ang II to induce tubulointerstitial fibrosis. Hypoxia-inducible factor-1α (HIF-1α) renal tubular-specific knockout mice or LIMS1 knockdown AAV was used to investigate their effects on Ang II-induced renal interstitial fibrosis. In vitro, HIF-1α or LIMS1 was knocked down or overexpressed in HK2 cells after exposure to Ang II. KEY RESULTS: Increased expression of tubular LIMS1 was observed in human kidney with hypertensive nephropathy and in murine kidney from Ang II-induced hypertension model. Tubular-specific knockdown of LIMS1 ameliorated Ang II-induced tubulointerstitial fibrosis in mice. Furthermore, we demonstrated that LIMS1 was transcriptionally regulated by HIF-1α in tubular cells and that tubular HIF-1α knockout ameliorates LIMS1-mediated tubulointerstitial fibrosis. In addition, LIMS1 promotes Ang II-induced tubulointerstitial fibrosis by interacting with vimentin. CONCLUSION AND IMPLICATIONS: We conclude that HIF-1α transcriptionally regulated LIMS1 plays a central role in Ang II-induced tubulointerstitial fibrosis through interacting with vimentin. Our finding represents a new insight into the mechanism of Ang II-induced tubulointerstitial fibrosis and provides a novel therapeutic target for progression of CKD.

13.
Ann Med ; 56(1): 2346537, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38696817

RESUMEN

BACKGROUND: To investigate the effectiveness of the intervention with critical value management and push short messaging service (SMS), and to determine improvement in the referral rate of patients with positive hepatitis C antibody (anti-HCV). METHODS: No intervention was done for patients with positive anti-HCV screening results from 1 January 2015 to 31 October 2021. Patients with positive anti-HCV results at our hospital from 1 November 2021 to 31 July 2022 were informed vide critical value management and push SMS. For inpatients, a competent physician was requested to liaise with the infectious disease physician for consultation, and patients seen in the OPD (outpatient department) were asked to visit the liver disease clinic. The Chi-square correlation test, one-sided two-ratio test and linear regression were used to test the relationship between intervention and referral rate. RESULTS: A total of 638,308 cases were tested for anti-hepatitis C virus (HCV) in our hospital and 5983 of them were positive. 51.8% of the referred patients were aged 18-59 years and 10.8% were aged ≥75 years. The result of Chi-square correlation test between intervention and referral was p = .0000, p < .05. One-sided two-ratio test was performed for statistics of pre-intervention referral rate (p1) and post-intervention referral rate (p2). Normal approximation and Fisher's exact test for the results obtained were 0.000, p < .05, and the alternative hypothesis p1 - p2 < 0 was accepted. The linear regression equation was referral = 0.1396 × intervention + 0.3743, and the result model p = 8.79e - 09, p < .05. The model was significant, and the coefficient of intervention was 0.1396. CONCLUSIONS: The interventions of critical value management and push SMS were correlated with the referral rate of patients with positive anti-HCV.


Asunto(s)
Hepatitis C , Derivación y Consulta , Humanos , Derivación y Consulta/estadística & datos numéricos , Persona de Mediana Edad , Masculino , Femenino , Adulto , Anciano , Adolescente , Hepatitis C/tratamiento farmacológico , Hepatitis C/diagnóstico , Adulto Joven , Anticuerpos contra la Hepatitis C/sangre , Envío de Mensajes de Texto , Mejoramiento de la Calidad
14.
Int J Biol Macromol ; 269(Pt 1): 131794, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38697434

RESUMEN

A middle ear infection occurs due to the presence of several microorganisms behind the eardrum (tympanic membrane) and is very challenging to treat due to its unique location and requires a well-designed treatment. If not treated properly, the infection can result in severe symptoms and unavoidable side effects. In this study, excellent biocompatible ethyl cellulose (EC) and biodegradable polyhydroxybutyrate (PHB) biopolymer were used to fabricate drug-loaded nanofiber scaffolds using an electrospinning technique to overcome antibiotic overdose and insufficient efficacy of drug release during treatment. PHB polymer was produced from Halomonas sp., and the purity of PHB was found to around be 90 %. Additionally, ciprofloxacin (CIP) and amoxicillin (AMX) are highly preferable since both drugs are highly effective against gram-negative and gram-positive bacteria to treat several infections. Obtained smooth nanofibers were between 116.24 and 171.82 nm in diameter and the addition of PHB polymer and antibiotics improved the morphology of the nanofiber scaffolds. Thermal properties of the nanofiber scaffolds were tested and the highest Tg temperature resulted at 229 °C. The mechanical properties of the scaffolds were tested, and the highest tensile strength resulted in 4.65 ± 6.33 MPa. Also, drug-loaded scaffolds were treated against the most common microorganisms that cause the infection, such as S.aureus, E.coli, and P.aeruginosa, and resulted in inhibition zones between 10 and 21 mm. MTT assay was performed by culturing human adipose-derived mesenchymal stem cells (hAD MSCs) on the scaffolds. The morphology of the hAD MSCs' attachment was tested with SEM analysis and hAD MSCs were able to attach, spread, and live on each scaffold even on the day of 7. The cumulative drug release kinetics of CIP and AMX from drug-loaded scaffolds were analysed in phosphate-buffered saline (pH: 7.4) within different time intervals of up to 14 days using a UV spectrophotometer. Furthermore, the drug release showed that the First-Order and Korsmeyer-Peppas models were the most suitable kinetic models. Animal testing was performed on SD rats, matrix and collagen deposition occurred on days 5 and 10, which were observed using Hematoxylin-eosin and Masson's trichrome staining. At the highest drug concentration, a better repair effect was observed. Results were promising and showed potential for novel treatment.

15.
Angew Chem Int Ed Engl ; : e202403241, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710651

RESUMEN

Exocytosis involving the fusion of intracellular vesicles with cell membrane, is thought to be modulated by the mechanical cues in the microenvironment. Single-cell electrochemistry can offer unique information about the quantification and kinetics of exocytotic events, however, the effects of mechanical force on vesicular release has been poorly explored. Herein, we developed a stretchable microelectrode with excellent electrochemical stability under mechanical deformation by microfabrication of functionalized poly(3,4-ethylenedioxythiophene) conductive ink, which achieved real-time quantitation of strain-induced vesicular exocytosis from a single cell for the first time. We found that mechanical strain could cause calcium influx via the activation of Piezo1 channel in chromaffin cell, initiating the vesicular exocytosis process. Interestingly, mechanical strain increases the amount of catecholamines release by accelerating the opening and prolonging the closing of fusion pore during exocytosis. This work is expected to provide a revealing insight on the regulatory effects of mechanical stimuli on vesicular exocytosis.

16.
Chem Biodivers ; : e202400832, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712949

RESUMEN

Two new cytochalasans, marcytoglobosins A (1) and B (2) were isolated from the marine sponge associated fungus Chaetomium globosum 162105, along with six known compounds (3-8). The complete structures of two new compounds were determined based on 1D/2D NMR and HR-MS spectroscopic analyses coupled with ECD calculations. All eight isolates were evaluated for their antibacterial activity. Among them, compounds 3-8 displayed antibacterial effects against Staphylococcus epidermidis, Bacillus thuringiensis, Pseudomonas syringae pv. Actinidiae, Vibrio alginolyticus, and Edwardsiella piscicida with minimum inhibitory concentration (MIC) values ranging from 10 to 25 µg/mL.

17.
Front Public Health ; 12: 1375533, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756891

RESUMEN

Background: Nasopharyngeal carcinoma (NPC) has an extremely high incidence rate in Southern China, resulting in a severe disease burden for the local population. Current EBV serologic screening is limited by false positives, and there is opportunity to integrate polygenic risk scores for personalized screening which may enhance cost-effectiveness and resource utilization. Methods: A Markov model was developed based on epidemiological and genetic data specific to endemic areas of China, and further compared polygenic risk-stratified screening [subjects with a 10-year absolute risk (AR) greater than a threshold risk underwent EBV serological screening] to age-based screening (EBV serological screening for all subjects). For each initial screening age (30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, and 65-69 years), a modeled cohort of 100,000 participants was screened until age 69, and then followed until age 79. Results: Among subjects aged 30 to 54 years, polygenic risk-stratified screening strategies were more cost-effective than age-based screening strategies, and almost comprised the cost-effectiveness efficiency frontier. For men, screening strategies with a 1-year frequency and a 10-year absolute risk (AR) threshold of 0.7% or higher were cost-effective, with an incremental cost-effectiveness ratio (ICER) below the willingness to pay (¥203,810, twice the local per capita GDP). Specifically, the strategies with a 10-year AR threshold of 0.7% or 0.8% are the most cost-effective strategies, with an ICER ranging from ¥159,752 to ¥201,738 compared to lower-cost non-dominated strategies on the cost-effectiveness frontiers. The optimal strategies have a higher probability (29.4-35.8%) of being cost-effective compared to other strategies on the frontier. Additionally, they reduce the need for nasopharyngoscopies by 5.1-27.7% compared to optimal age-based strategies. Likewise, for women aged 30-54 years, the optimal strategy with a 0.3% threshold showed similar results. Among subjects aged 55 to 69 years, age-based screening strategies were more cost-effective for men, while no screening may be preferred for women. Conclusion: Our economic evaluation found that the polygenic risk-stratified screening could improve the cost-effectiveness among individuals aged 30-54, providing valuable guidance for NPC prevention and control policies in endemic areas of China.


Asunto(s)
Análisis Costo-Beneficio , Cadenas de Markov , Carcinoma Nasofaríngeo , Humanos , China/epidemiología , Persona de Mediana Edad , Masculino , Adulto , Femenino , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/genética , Anciano , Neoplasias Nasofaríngeas/diagnóstico , Detección Precoz del Cáncer/economía , Tamizaje Masivo/economía , Herencia Multifactorial , Factores de Riesgo , Medición de Riesgo
18.
Surgery ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38762380

RESUMEN

BACKGROUND: Sepsis, characterized by dysregulated host responses to infection, remains a critical global health concern, with high morbidity and mortality rates. The gastrointestinal tract assumes a pivotal role in sepsis due to its dual functionality as a protective barrier against injurious agents and as a regulator of motility. Dexmedetomidine, an α2-adrenergic agonist commonly employed in critical care settings, exhibits promise in influencing the maintenance of intestinal barrier integrity during sepsis. However, its impact on intestinal motility, a crucial component of intestinal function, remains incompletely understood. METHODS: In this study, we investigated dexmedetomidine's multifaceted effects on intestinal barrier function and motility during sepsis using both in vitro and in vivo models. Sepsis was induced in Sprague-Dawley rats via cecal ligation and puncture. Rats were treated with dexmedetomidine post-cecal ligation and puncture, and various parameters were assessed to elucidate dexmedetomidine's impact. RESULTS: Our findings revealed a dichotomous influence of dexmedetomidine on intestinal physiology. In septic rats, dexmedetomidine administration resulted in improved intestinal barrier integrity, as evidenced by reduced mucosal hyper-permeability and morphological alterations. However, a contrasting effect was observed on intestinal motility, as dexmedetomidine treatment inhibited both the frequency and amplitude of contractions in isolated intestinal strips and decreased the distance of ink migration in vivo. Additionally, dexmedetomidine suppressed the secretion of pro-motility hormones while having no influence on hormones that inhibit intestinal peristalsis. CONCLUSION: The study revealed that during sepsis, dexmedetomidine exhibited protective effects on barrier integrity, although concurrently it hindered intestinal motility, partly attributed to its modulation of pro-motility hormone secretion. These findings underscore the necessity of a comprehensive understanding of dexmedetomidine's impact on multiple facets of gastrointestinal physiology in sepsis management, offering potential implications for therapeutic strategies and patient care.

19.
Adv Mater ; : e2311926, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703354

RESUMEN

Traditional lithium-ion battery (LIB) anodes, whether intercalation-type like graphite or alloying-type like silicon, employing a single lithium storage mechanism, are often limited by modest capacity or substantial volume changes. Here, the kesterite multi-metal dichalcogenide (CZTSSe) is introduced as an anode material that harnesses a conversion-alloying hybrid lithium storage mechanism. Results unveil that during the charge-discharge processes, the CZTSSe undergoes a comprehensive phase evolution, transitioning from kesterite structure to multiple dominant phases of sulfides, selenides, metals, and alloys. The involvement of multi-components facilitates electron transport and mitigates swelling stress; meanwhile, it results in formation of abundant defects and heterojunctions, allowing for increased lithium storage active sites and reduced lithium diffusion barrier. The CZTSSe delivers a high specific capacity of up to 2266 mA h g-1 at 0.1 A g-1; while, maintaining a stable output of 116 mA h g-1 after 10 000 cycles at 20 A g-1. It also demonstrates remarkable low-temperature performance, retaining 987 mA h g-1 even after 600 cycles at -40 °C. When employed in full cells, a high specific energy of 562 Wh kg-1 is achieved, rivalling many state-of-the-art LIBs. This research offers valuable insights into the design of LIB electrodes leveraging multiple lithium storage mechanisms.

20.
BMC Psychiatry ; 24(1): 249, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565988

RESUMEN

BACKGROUND: Both genetic and environmental factors play crucial roles in the development of major depressive disorder (MDD) and suicide attempts (SA). However, the interaction between both items remains unknown. This study aims to explore the interactions between the genetic variants of the serotonin 2 A receptor (HTR2A) and the nitric oxide synthase 1 (NOS1) and environmental factors in patients who experience MDD and SA. METHODS: A total of 334 patients with MDD and a history of SA (MDD-SA) were recruited alongside 518 patients with MDD with no history of SA (MDD-NSA), and 716 healthy controls (HC). The demographic data and clinical characteristics were collected. Sequenom mass spectrometry was used to detect eight tag-single nucleotide polymorphisms (tagSNPs) in HTR2A (rs1328683, rs17068986, and rs3125) and NOS1 (rs1123425, rs2682826, rs3741476, rs527590, and rs7959232). Generalized multifactor dimensionality reduction (GMDR) was used to analyze the gene-environment interactions. RESULTS: Four tagSNPs (rs17068986, rs3125, rs527590, and rs7959232) exhibited significant differences between the three groups. However, these differences were not significant between the MDD-SA and MDD-NSA groups after Bonferroni correction. A logistic regression analysis revealed that negative life events (OR = 1.495, 95%CI: 1.071-2.087, P = 0.018), self-guilt (OR = 2.263, 95%CI: 1.515-3.379, P < 0.001), and negative cognition (OR = 2.252, 95%CI: 1.264-4.013, P = 0.006) were all independently associated with SA in patients with MDD. Furthermore, GMDR analysis indicated a significant interaction between HTR2A rs3125 and negative life events. Negative life events in conjunction with the HTR2A rs3125 CG + GG genotype were associated with a higher SA risk in patients with MDD when compared to the absence of negative life events in conjunction with the CC genotype (OR = 2.547, 95% CI: 1.264-5.131, P = 0.009). CONCLUSION: Several risk factors and a potential interaction between HTR2A rs3125 and negative life events were identified in patients with SA and MDD. The observed interaction likely modulates the risk of MDD and SA, shedding light on the pathogenesis of SA in patients with MDD.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Estudios Transversales , Trastorno Depresivo Mayor/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Intento de Suicidio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...