Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 924: 171383, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462003

RESUMEN

The key to constructing an anodic electro-Fenton system hinges on two pivotal criteria: enhancing the catalyst activity and selectivity in water oxidation reaction (WOR), while simultaneously inhibiting the decomposition of hydrogen peroxide (H2O2) which is on-site electrosynthesized at the anode. To address the issues, we synthesized novel WO3/SnO2-x electrocatalysts, enriched with oxygen vacancies, capitalize on the combined activity and selectivity advantages of both WO3 and SnO2-x for the two-electron pathway electrocatalytic production of H2O2. Moreover, the introduction of oxygen vacancies plays a critical role in impeding the decomposition of H2O2. This innovative design ensures that the Faraday efficiency and yield of H2O2 are maintained at over 80 %, with a noteworthy production rate of 0.2 mmol h-1 cm-2. We constructed a novel electro-Fenton system that operates using only H2O as its feedstock and applied it to treat highly toxic uniform dimethylhydrazine (UDMH) from rocket launch effluent. Our experiments revealed a substantial total organic carbon (TOC) removal, achieving approximately 90 % after 120 mins of treatment. Additionally, the toxicity of N-nitrosodimethylamine (NDMA), a byproduct of great concern, was shown to be effectively mitigated, as evidenced by acute toxicity evaluations using zebrafish embryos. The degradation mechanism of UDMH is predominantly characterized by the advanced oxidative action of H2O2 and hydroxyl radicals, as well as by complex electron transfer processes that warrant further investigation.

2.
J Transl Med ; 22(1): 155, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360728

RESUMEN

BACKGROUND: Hypertension influences the inflammatory pathological changes in the retina. The function of the inflammasomes is significant. To see if Sirtuin 1 (SIRT1) regulates angiotensin II (Ang II)-induced hypertensive retinopathy and inflammation by modulating NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation and the potential protective effects of fucoidan (FO) in mouse retinal vascular endothelial cells (mRECs) and mice retina. METHODS: The diagnosis of hypertensive retinopathy was made after three weeks of Ang II infusion (3000 ng/kg/min). One day prior to the commencement of Ang II infusion, the mice were treatment with NLRP3 inhibitor MCC950 (10 mg/kg/day, intraperitoneal injections) or FO (300 mg/kg/day, oral gavage). A blood pressure was recorded. Hematoxylin and eosin (H&E) staining was used to conduct pathological alterations, dihydroethidium bromide (DHE) was utilized to assess oxidative stress damage in the retina, and fluorescence angiography was used to identify vascular disorders in the eye. Using immunohistochemical labeling, NLRP3 expression was found. Reactive protein and mRNA expression levels in mouse retina and cells were assessed using Western blot and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: NLRP3 inflammasome activation and SIRT1 decrease were brought about by Ang II infusion. Retinopathy and dysfunction were lessened by MCC950 target-induced NLRP3 inflammasome activation, while overexpression of SIRT1 had the opposite impact on NLRP3 inflammasome activation, indicating that SIRT1 functions as an upstream regulator of NLRP3 activity. FO may improve SIRT1 expression and decrease NLRP3 activation in retinopathy and dysfunction brought on by Ang II, and the effects were consistent across both in vivo and in vitro models. CONCLUSIONS: SIRT1 adversely regulates the NLRP3 inflammasome pathway, which in turn increases Ang II-induced inflammation and hypertensive retinopathy. FO may mitigate Ang II-induced retinopathy and dysfunction via modulating the expression of SIRT1/NLRP3. This implies practical approaches to the management of hypertensive retinopathy.


Asunto(s)
Retinopatía Hipertensiva , Proteína con Dominio Pirina 3 de la Familia NLR , Polisacáridos , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Sirtuina 1/metabolismo , Células Endoteliales/metabolismo , Inflamación , Angiotensina II
4.
Chemosphere ; 346: 140606, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939928

RESUMEN

H2O2 is widely used in the treatment of refractory organic pollutants.However, due to its explosive and corrosive chemical characteristics, H2O2 will bring great safety risks and troubles in transportation.So we chose sodium percarbonate(SPC) to be used in catalytic wet peroxide oxidation enhanced by swirl flow(SF-CWPO) and we designed carbon nanotubes with Ni single atom sites(Ni-NCNTs/AC) to activate SPC to treat an m-cresol wastewater containing Si.Meanwhile, artificial intelligence which used Artificial neural network (ANN) was used to optimize the conditions.Under the conditions of pH = 9.27, reaction time of 8.91 min, m-cresol concentration is 59.09 mg L-1, SPC dosage is 2.80 g L-1 and Na2SiO3·9H2O dosage is 77.27 mg L-1, the degradation rate of total organic carbon(TOC) and m-cresol reaches 94.37% and 100%, respectively.Finally, the applicability of Ni-NCNTs/AC-SPC-SF-CWPO technology was evaluated in a wastewater system of a sewage treatment enterprise and Fourier transform ion cyclotron resonance mass spectrum(FT-ICR MS) analysis and chemical oxygen demand(COD) analysis showed the great ability of Ni-NCNTs/AC-SPC-SF-CWPO technology to treat wastewater.It is believed that this paper is of great significance to the design and construction of the in-depth research and industrial application of SF-CWPO.


Asunto(s)
Nanotubos de Carbono , Contaminantes Químicos del Agua , Peróxido de Hidrógeno , Aguas Residuales , Silicio , Inteligencia Artificial , Peróxidos , Oxidación-Reducción , Catálisis
5.
Environ Sci Pollut Res Int ; 30(49): 108135-108149, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37747612

RESUMEN

Iron-loaded zeolite (Fe-zeolite) has shown great potential as an efficient catalyst for degrading organic pollutants with high concentrations in the catalytic wet peroxide oxidation (CWPO) process under mild conditions. Here, 0.4 wt% Lanthanum (La) was added in the 1.0 wt% Fe-ZSM-5 by two-step impregnation method for an enhanced H2O2 utilization efficiency. For a systematical comparison, the CWPO process at 55 °C, where m-cresol with a high concentration of 1000 mg/L as a substrate, was studied over Fe-ZSM-5 and Fe-La-ZSM-5 catalysts. Compared with Fe-ZSM-5, Fe-La-ZSM-5 showed 15% higher H2O2 utilization efficiency with comparable total organic carbon (TOC) removal at around 40%, meanwhile with a 15% reduced metal leaching. Transmission electron microscopy (TEM) with elemental mapping (EDS), surface acidity analysis by Fourier transform infrared (FT-IR) and NH3-temperature programmed desorption (NH3-TPD), redox property analysis by Raman spectroscopy and H2-temperature-programmed reduction (H2-TPR) of both catalysts revealed, that the La doped Fe-ZSM-5 can provide an altered surface acidity, a more uniform and evenly dispersed surface Fe species with a promoted reducibility, which effectively promoted the accurate decomposition of H2O2 into the reactive •OH radicals, enhanced the H2O2 utilization efficiency, and increased the catalyst stability. Also, more than 90% conversion was maintained during the continuous experiment for more than 10 consecutive test days under 55 °C without pH adjustment, showing a promising possibility of the Fe-La-ZSM-5 for a practical wastewater treatment process.


Asunto(s)
Peróxidos , Zeolitas , Peróxido de Hidrógeno/química , Lantano , Zeolitas/química , Espectroscopía Infrarroja por Transformada de Fourier , Catálisis , Oxidación-Reducción
6.
Mol Pharm ; 20(3): 1717-1728, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36809003

RESUMEN

Chemodynamic therapy (CDT) that involves the use of Fenton catalysts to convert endogenous hydrogen peroxide (H2O2) to hydroxyl radicals (·OH) constitutes a promising strategy for cancer therapy; however, insufficient endogenous H2O2 and glutathione (GSH) overexpression render its efficiency unsatisfactory. Herein, we present an intelligent nanocatalyst that comprises copper peroxide nanodots and DOX-loaded mesoporous silica nanoparticles (MSNs) (DOX@MSN@CuO2) and can self-supply exogenous H2O2 and respond to specific tumor microenvironments (TME). Following endocytosis into tumor cells, DOX@MSN@CuO2 initially decomposes into Cu2+ and exogenous H2O2 in the weakly acidic TME. Subsequently, Cu2+ reacts with high GSH concentrations, thereby inducing GSH depletion and reducing Cu2+ to Cu+ Next, the generated Cu+ undergoes Fenton-like reactions with exogenous H2O2 to accelerate toxic ·OH production, which exhibits a rapid reaction rate and is responsible for tumor cell apoptosis, thereby enhancing CDT. Furthermore, the successful delivery of DOX from the MSNs achieves chemotherapy and CDT integration. Thus, this excellent strategy can resolve the problem of insufficient CDT efficacy due to limited H2O2 and GSH overexpression. Integrating H2O2 self-supply and GSH deletion enhances CDT, and DOX-induced chemotherapy endows DOX@MSN@CuO2 with effective tumor growth-inhibiting properties alongside minimal side effects in vivo.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Neoplasias , Humanos , Cobre , Peróxido de Hidrógeno , Glutatión , Línea Celular Tumoral , Microambiente Tumoral
7.
Sci Total Environ ; 873: 162264, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36842596

RESUMEN

As a high-performance liquid rocket fuel, unsymmetrical dimethylhydrazine (UDMH) will produce wastewater during transportation, storage and cleaning containers. The wastewater will have a bad impact on human health and ecological environment, and it must be properly handled. There are many reports about the technical feasibility of UDMH wastewater treatment. Less attention is paid to analyzing the impact on the environment during the treatment process. This paper quantifies the environmental impacts and economic benefits of four advanced oxidation processes for the treatment of UDMH wastewater based on life cycle assessment and life cycle costing methods. Taking the UDMH wastewater produced by an aerospace group of Tianjin, China as the research object, using Fenton method, UV-Fenton method, electro catalytic oxidation (EC) with ruthenium iridium titanium (Ti/TiO2-RuO2-IrO2) as electrode and electro catalytic oxidation with boron-doped diamond (BDD) as electrode as treatment methods, on the basis of the laboratory test, the industrialized device is adopted. The resource consumption, energy consumption, pollutant discharge and cost were compared when the TOC removal rate was the same, and a better method of treating unsymmetrical dimethyl hydrazine wastewater was discussed. The results show that the impact on most types of environments is as follows: UV-Fenton < Fenton < EC (BDD) < EC (Ti/TiO2-RuO2-IrO2), and the four advanced oxidation methods are all beneficial to reduce eutrophication. The life cycle cost of UV-Fenton is the lowest (US$1.53/m3). Combined with environmental and economic analysis, it can be seen that UV-Fenton is the best choice. Through sensitivity analysis, it can be seen that reducing chemical reagents and electricity consumption, and changing the way of generating electricity to renewable energy can significantly reduce the environmental and economic impact. The life cycle cost of EC(BDD) as the electrode is the highest (US$26.20/m3), but it can achieve a TOC removal rate of 97.75 %, so it is a better choice when only the removal rate is required regardless of cost.

8.
Chemosphere ; 318: 137825, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36681194

RESUMEN

Membrane technology has been widely used to treat wastewater from a variety of industries, but it also results in a large amount of concentrated wastewater containing organic pollutants after membrane treatment, which is challenging to decompose. Here in this work, a series of perovskite SrFexZr1-xO3-δ catalysts were prepared via a modified co-precipitation method and evaluated for catalytic ozone oxidative degradation of m-cresol. An artificial neural intelligence networks (ANN) model was employed to train the experimental data to optimize the preparation parameters of catalysts, with SrFe0.13Zr0.87O3-δ being the optimal catalysts. The resultant catalysts before and after reduction were then thoroughly characterized and tested for m-cresol degradation. It was found that the co-doping of Fe and Zr at the B-site and the improvement of oxygen vacancies and oxygen active species by reduction dramatically increased TOC removal rates up to 5 times compared with ozone alone, with the conversion rate of m-cresol reaching 100%. We also proposed a possible mechanism for m-cresol degradation via investigating the intermediates using GC-MS, and confirmed the good versatility of the reduced SrFe0.13Zr0.87O3-δ catalyst to remove other common organic pollutants in concentrated wastewater. This work demonstrates new prospects for the use of perovskite materials in wastewater treatment.


Asunto(s)
Contaminantes Ambientales , Ozono , Contaminantes Químicos del Agua , Agua , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Inteligencia Artificial , Catálisis
9.
Chemosphere ; 313: 137346, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36442676

RESUMEN

When a membrane is used to treat dye wastewater, dye molecules are continually concentrated at the membrane surface over time, resulting in a dramatic decrease in membrane flux. Aside from routine membrane cleaning, the pretreatment of dye wastewater to degrade organic pollutants into tiny molecules is a facile solution to the problem. In this study, the use of layered double hydroxide (LDH) to activate peroxymonosulfate (PMS) for efficient degradation of organic pollutant has been thoroughly investigated. We utilized a simple two-drop co-precipitation process to prepare CoFe-LDH. The transition metal components in CoFe-LDH effectively activate PMS to create oxidative free radicals, and the layered structure of LDH increases the number of active sites, and thereby considerably enhancing the reaction rate. It was found that the reaction process produced non-free and free radicals, including singlet oxygen (1O2), sulfate radicals (SO4•-), and hydroxyl radicals (•OH), with 1O2 being the dominant reactive species. Under the optimal conditions (pH 6.7, PMS dosage 0.2 g/L, catalyst loading 0.1 g/L), the degradation of Acid Red 27 dye in the CoFe-LDH/PMS system reached 96.7% within 15 min at an initial concentration of 200 mg/L. The CoFe-LDH/PMS system also exhibited strong resistance to inorganic ions and pH during the degradation of organic pollutants. This study presents a novel strategy for the synergistic treatment of dye wastewater with free and non-free radicals produced by LDH-activated PMS in a natural environment.


Asunto(s)
Contaminantes Ambientales , Aguas Residuales , Peróxidos/química , Hidróxidos/química , Radicales Libres
10.
Chemosphere ; 312(Pt 1): 137194, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36372337

RESUMEN

The treatment of high-salinity and high-organic wastewater is a tough task, with the removal of organic matter and the separation of salts often mutually restricting. Catalytic wet air oxidation (CWAO) coupled desalination technology (membrane distillation (MD), membrane bioreactor (MBR), ultrafiltration (UF), nanofiltration (NF), etc.) provides an effective method to simultaneously degrade the high-salinity (via desalination) and high-organic matters (via CWAO) in wastewater. In this work, five kinds of RuO2/TiO2 catalysts with different calcination temperatures were prepared for CWAO of maleic acid wastewater with a theoretical chemical oxygen demand (COD) value of 20,000 mg L-1. RuO2/TiO2 series catalysts demonstrated prominent salt resistance, with more than 80% TOC removal rates in the CWAO system containing 5 wt% Na2SO4; while RuO2/TiO2-350 showed the best degradation performance in both non-salinity and Na2SO4-containing conditions. Multiple characterization techniques, such as XRD, BET, XPS, NH3-TPD and TEM etc., verified the physicochemical structure of RuO2/TiO2 catalysts, and their influence on the degradation of pollutants. The calcination temperature was found to have a direct impact on the specific surface area, pore volume, oxygen vacancies and acid sites of catalysts, which in turn affected the ultimate catalytic activity. Furthermore, we also investigated the performance of the RuO2/TiO2-350 catalyst for the treatment of acids, alcohols and aromatic compounds with the addition of NaCl or Na2SO4, proving its good universality and excellent salt resistance in saline wastewater. Meanwhile, the relationship between the structure of three types of organic compounds and the degradation effect in the CWAO system was also explored.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Aguas Residuales , Cloruro de Sodio , Contaminantes Químicos del Agua/análisis , Catálisis , Oxidación-Reducción
11.
J Environ Manage ; 324: 116388, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36352712

RESUMEN

Sludge dewatering is crucial for cutting the cost of sludge post-disposal in wastewater treatment plants. Response surface methodology (RSM) was used in this study to sufficiently investigate the interaction among persulfate, zero-valent iron (ZVI) and reaction time on the sludge dewatering. Under the experimental condition at the central point in RSM, the sludge moisture content was reduced to 54%. The sludge-based biochar obtained from the pyrolysis of persulfate-ZVI treated sludge at the central point in RSM was marked as SC-M and tested for catalytic activity. With the catalyst SC-M, the removal rates of m-cresol and total organic carbon (TOC) were 98.1% and 84.2%, respectively. The persulfate-ZVI treatment for sludge dewatering facilitated increasing the proportion of iron species in SC-M, which contributed to its high catalytic activity. M-cresol degradation with SC-M was a two-period reaction including an induction period and a rapid reaction with the apparent activation energy at a low level. This study integrates the sludge dewatering by persulfate-ZVI treatment and m-cresol degradation by catalytic oxidation with the biochar SC-M prepared from the dewatered iron-rich sludge, providing an effective, economic and environment-friendly approach for sewage sludge utilization and management.


Asunto(s)
Pirólisis , Aguas del Alcantarillado , Hierro , Peróxidos , Oxidación-Reducción
12.
ACS Appl Mater Interfaces ; 14(36): 40834-40840, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36053002

RESUMEN

The broad application of peroxymonosulfate (PMS)-assisted oxidation by heterogeneous catalysts for contaminant removal suffers from the limitation of low PMS decomposition efficiency and consequent excessive electrolyte residues. In this work, we report that a micrometer-scale superstructured Ni-N-C catalyst Ni-NCNT/CB with a nanotube-array surface layer exhibits ultrahigh m-cresol removal efficiency with low PMS input and possesses ∼17-fold higher catalytic specific activity (reaction rate constant normalized to per Ni-Nx site) compared to the traditional Ni-SAC catalyst. Electron paramagnetic resonance results indicate that 1O2 is the dominant oxygen species, and Ni-NCNT/CB with a space-confined layer exhibits high 1O2 utilization for m-cresol degradation. Electrochemical impedance spectroscopy and a normalized k value of Ni-NCNT/CB confirm the spatial confinement effect on the catalyst surface, which is beneficial for regulating the mass transfer and exerting the high activity of active sites. This study gives a new application for spatial confinement, and the configuration of Ni-NCNT/CB may guide a rational catalyst design for AOP wastewater treatment.

13.
Chemosphere ; 307(Pt 2): 135938, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35944669

RESUMEN

With the development of methanol-to-olefin (MTO) process, the effective disposal of wastewater was one key factor for the long-period and benign development of this technology. Herein, a sludge-based biochar catalyst (GSC-P) was synthesized and used in photo-Fenton reaction for the degradation of MTO wastewater from the outlet of a biological aerated filter. More iron was distributed on the surface of GSC-P catalyst, facilitating the photo-Fenton oxidation of MTO wastewater, with chemical oxygen demand (COD) removal rate of 75.4% and total organic carbon (TOC) removal rate of 62.5%. The 2223 unique molecular formulas assigned by a Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in the original MTO wastewater showed that CHO compounds shared the lowest peak numbers (20.2%) but the highest peak abundance (51.6%) among the four groups. Besides, lipids, unsaturated hydrocarbons, lignins and proteins were the main structural types. After photo-Fenton treatment of 60 min, there were 56.7%-74.0% of compounds removed by the analysis of van Krevelen diagram, indicating that the MTO wastewater was degraded efficiently. Three possible evolution processes of dissolved organic matters during the photo-Fenton reaction were disclosed at the molecular-level.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Alquenos , Carbón Orgánico , Peróxido de Hidrógeno/química , Hierro/química , Lignina/metabolismo , Lípidos , Metanol , Oxidación-Reducción , Ácidos Fosfóricos , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
14.
Chemosphere ; 304: 135244, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35679980

RESUMEN

Biochar (BC) adsorption has been widely acknowledged as an efficient approach for the removal of antibiotics. Despite the importance of oxygen-containing functional groups for the antibiotics removal, most of these may be obtained in BC only relying on the addition of oxidants. Herein, an environmentally friendly and oxygen-enriched functional groups adsorbent, namely Chlamydomonas BC (CBC), was fabricated via simple pyrolysis process. Then, the H-bonding, electron donor-acceptor and electrostatic attraction were identified as the main mechanisms regarding sulfathiazole (STZ) adsorption (506.38 mg/g). The carbon-oxygen functional groups on the surface of CBC (61%), especially -COOH and -OH, acted as a pivotal component. Additionally, further theoretical calculation led to the observation that STZ exhibited the highest chemical reactivity (η = 0.04), strong electron exchange capacity (µ = -0.16), remarkable electron accepting capacity (ω = 0.28) and excellent electron transfer efficiency (EHOMO-ELUMO gap = 0.29) under the influence of thiazolyl. The electrophilic sulfonamide group and the nucleophilic thiazole were identified as the main active sites of STZ. In summary, the results of this research provide a guiding role for the preparation of adsorbents driven by the structural characteristics of pollutants.


Asunto(s)
Microalgas , Contaminantes Químicos del Agua , Adsorción , Antibacterianos , Carbón Orgánico/química , Cinética , Oxígeno , Sulfanilamida , Contaminantes Químicos del Agua/análisis
15.
J Environ Sci (China) ; 120: 105-114, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35623764

RESUMEN

Catalytic wet air oxidation (CWAO) coupled desalination technology provides a possibility for the effective and economic degradation of high salinity and high organic wastewater. Chloride widely occurs in natural and wastewaters, and its high content jeopardizes the efficacy of Advanced oxidation process (AOPs). Thus, a novel chlorine ion resistant catalyst B-site Ru doped LaFe1-xRuxO3-δ in CWAO treatment of chlorine ion wastewater was examined. Especially, LaFe0.85Ru0.15O3-δ was 45.5% better than that of the 6%RuO2@TiO2 (commercial carrier) on total organic carbon (TOC) removal. Also, doped catalysts LaFe1-xRuxO3-δ showed better activity than supported catalysts RuO2@LaFeO3 and RuO2@TiO2 with the same Ru content. Moreover, LaFe0.85Ru0.15O3-δ has novel chlorine ion resistance no matter the concentration of Cl- and no Ru dissolves after the reaction. X-ray diffraction (XRD) refinement, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and X-ray absorption fine structure (XAFS) measurements verified the structure of LaFe0.85Ru0.15O3-δ. Kinetic data and density functional theory (DFT) proved that Fe is the site of acetic acid oxidation and adsorption of chloride ions. The existence of Fe in LaFe0.85Ru0.15O3-δ could adsorb chlorine ion (catalytic activity inhibitor), which can protect the Ru site and other active oxygen species to exert catalytic activity. This work is essential for the development of chloride-resistant catalyst in CWAO.


Asunto(s)
Salinidad , Aguas Residuales , Catálisis , Cloruros , Cloro
16.
Chemosphere ; 298: 134356, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35306055

RESUMEN

Catalytic wet peroxide oxidation (CWPO) enhanced by swirl flow (SF-CWPO) was developed for the first time to explore the degradation of m-cresol in 3%iron/activated carbon catalysed Fenton reaction. Under the conditions of catalyst dosage of 0.6 g/L, H2O2 dosage of 1.5 mL/L, pH = 6 and reaction time of 20 min, the degradation rate of m-cresol and total organic carbon in 100 mg/L m-cresol solution reaches 81.5% and 82%, respectively. The reaction speed in the SF-CWPO system with an independently designed cyclone reactor was two times faster than the traditional CWPO systems. In addition, via liquid chromatography-mass spectrometry analysis of the degradation product, the possible degradation pathway for m-cresol was proposed. The proposed SF-CWPO can potentially be an efficient and economical method to treat organic pollutants in wastewaters.


Asunto(s)
Peróxidos , Contaminantes Químicos del Agua , Catálisis , Cresoles/química , Peróxido de Hidrógeno/química , Oxidación-Reducción , Peróxidos/química , Contaminantes Químicos del Agua/análisis
17.
Environ Res ; 210: 112965, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35218712

RESUMEN

Converting microalgal biomass residues into biochar (BC) after microalgal wastewater treatment is a popular approach that can produce an adsorbent to treat refractory organic pollutants. Moreover, the adsorption efficiency via BC is closely associated with the surface morphology, which may be determined by the composition of the microalgal biomass. However, the intrinsic relationship and advanced mechanism between the adsorption efficiency and microalgal composition have not been thoroughly investigated. In this work, four microalgal BCs were prepared from Chlamydomonas sp. QWY37 (CBC) after collection from four different growth stages of microalgal biomass during wastewater treatment. The adsorption performance for sulfamethoxazole indicates that the CBC collected in the mid-log phase (CBCL-M) possessed the best adsorption capacity (287.89 mg/g) owing to the higher decomposition of the microalgal cellular protein concentration (70%). Meanwhile, a higher protein content contributed to the largest specific surface area (42.16 m2/g), maximum pore volume (0.037 cm3/g) and abundant surface functional groups of the CBCL-M. Furthermore, based on the theoretical calculation of the structural analysis, the adsorption mechanism was a multilayer adsorption process in accordance with the Freundlich isotherm. Additionally, the strong hydrogen bond, electron donor-acceptor interaction and electrostatic attraction were the main adsorption mechanisms due to the carboxyl/ester functional groups. The results of this research provide a novel perspective on the reasonable harvest of microalgal biomass for BC fabrication and large-scale implementation of microalgal BC in future applications.


Asunto(s)
Microalgas , Contaminantes Químicos del Agua , Adsorción , Biomasa , Carbón Orgánico , Sulfametoxazol , Contaminantes Químicos del Agua/análisis
18.
Materials (Basel) ; 14(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34832216

RESUMEN

Presently, in the context of the novel coronavirus pneumonia epidemic, several antibiotics are overused in hospitals, causing heavy pressure on the hospital's wastewater treatment process. Therefore, developing stable, safe, and efficient hospital wastewater treatment equipment is crucial. Herein, a bench-scale electrooxidation equipment for hospital wastewater was used to evaluate the removal effect of the main antibiotic levofloxacin (LVX) in hospital wastewater using response surface methodology (RSM). During the degradation process, the influence of the following five factors on total organic carbon (TOC) removal was discussed and the best reaction condition was obtained: current density, initial pH, flow rate, chloride ion concentration, and reaction time of 39.6 A/m2, 6.5, 50 mL/min, 4‱, and 120 min, respectively. The TOC removal could reach 41% after a reaction time of 120 min, which was consistent with the result predicted by the response surface (40.48%). Moreover, the morphology and properties of the electrode were analyzed. The degradation pathway of LVX was analyzed using high-performance liquid chromatography-mass spectrometry (LC-MS). Subsequently, the bench-scale electrooxidation equipment was changed into onboard-scale electrooxidation equipment, and the onboard-scale equipment was promoted to several hospitals in Dalian.

19.
Nanoscale ; 13(30): 12874-12884, 2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34477771

RESUMEN

Here, a series of LaFe1-xMnxO3-δ perovskite nanocatalysts were synthesized and tested for the catalytic ozonation of m-cresol for the first time. The B-site cation is regulated by metal doping, and the resulting LaFe0.26Mn0.74O3-δ with a rhombohedral structure showed excellent catalytic performance and structural stability owing to the abundant oxygen vacancies and the higher Fe2+/Fe3+ and Mn3+/Mn4+ ratios. Theoretical calculations have revealed that the oxygen vacancy has a strong affinity for ozone adsorption, and thus facilitated ozone decomposition by extending the O-O bond. Combined with low-valence Fe2+ and Mn3+ cations, the electron transfer in the catalytic ozonation reaction has been enhanced, which has promoted the production of reactive oxygen species (ROS). Taken together, the degradation pathway of m-cresol was proposed. Additionally, the LaFe0.26Mn0.74O3-δ catalyst remained stable during a 60 h reaction. This study has not only revealed the adsorption/decomposition pathways of ozone using LaFe0.26Mn0.74O3-δ perovskite nanocatalysts but also provided indepth insight into the electron transfer pathway on the surface of nanocatalysts during the process of catalytic ozonation.

20.
Water Sci Technol ; 84(3): 697-711, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34388128

RESUMEN

Carboxylic acids are the main pollutant of industrial wastewater during the advanced oxidation process (AOPs). In this study, a resin-based spherical activated carbon (RSAC, AF5) as an adsorbent was examined and acetic acid was used as a model substrate for adsorption investigation. The pH = 3, temperature = 298 K were fixed by batch technique. The pseudo-second-order kinetic model, the intraparticle and external models are fitted well, and it was found that the adsorption of acetic acid onto AF5 was controlled by liquid film diffusion. A Freundlich model indicated that the adsorption process was heterogeneous multimolecular layer adsorption on the surface. AF5 shows good regenerative ability; the recovery rate of adsorption capacity was ∼88% after five cycles. Chemical oxygen demand (COD) adsorption removal rate could be maintained at 100% for over 35 h in an actual AOPs effluent, and could be eluted for 100% after 8 h by 0.8wt% NaOH. Characterizations, including XRF, XRD, TG/DSC,FTIR, SEM and N2 adsorption, showed that the excellent adsorption performance was mainly due to the microporous structure and large specific surface area (1,512.88 m2/g), the adsorption mechanism mainly included pore filling effect and electrostatic attraction. After five adsorption recycles, AF5's pore characteristic did not change significantly. This study provides a scientific basis for the wastewater standard discharge process of AOPs coupled adsorption.


Asunto(s)
Carbón Orgánico , Contaminantes Químicos del Agua , Ácido Acético , Adsorción , Difusión , Concentración de Iones de Hidrógeno , Cinética , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...