Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 375(6579): 434-437, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35084976

RESUMEN

A stable perovskite heterojunction was constructed for inverted solar cells through surface sulfidation of lead (Pb)-rich perovskite films. The formed lead-sulfur (Pb-S) bonds upshifted the Fermi level at the perovskite interface and induced an extra back-surface field for electron extraction. The resulting inverted devices exhibited a power conversion efficiency (PCE) >24% with a high open-circuit voltage of 1.19 volts, corresponding to a low voltage loss of 0.36 volts. The strong Pb-S bonds could stabilize perovskite heterojunctions and strengthen underlying perovskite structures that have a similar crystal lattice. Devices with surface sulfidation retained more than 90% of the initial PCE after aging at 85°C for 2200 hours or operating at the maximum power point under continuous illumination for 1000 hours at 55° ± 5°C.

2.
ACS Appl Mater Interfaces ; 13(39): 46627-46633, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34558886

RESUMEN

PbI2 is a commonly used passivator for defect passivation in perovskite solar cells (PSCs). However, the poor conductivity nature of PbI2 may limit the further improvement of device performance. Here, we report a radical form of PbI2 with high conductivity to passivate defects for efficient PSCs through a combination of N,N,N',N'-tetramethylbenzidine (TMB). When PbI2 is combined with TMB, 4 orders of magnitude higher conductivity will be achieved owing to the formation of a TMB-PbI2 radical. As a result, the device performance is impressively increased from 20.48 to 22.63%. In addition, the device stability is also greatly improved and 95% of the initial efficiency is retained after aging at 85 °C for 600 h.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...