Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 121: 155119, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37801894

RESUMEN

BACKGROUND: Previous studies have reported that puerarin possesses cardioprotective, vasodilatory, anti-inflammatory, anti-apoptotic, and hypoglycemic properties. However, the impact of puerarin on sepsis-associated encephalopathy (SAE) remains unexplored. In this study, we explored whether puerarin can modulate microglia-mediated neuroinflammation for the treatment of SAE and delved into the underlying mechanisms. METHODS: We established a murine model of SAE through intraperitoneal injection of lipopolysaccharide (LPS). The puerarin treatment group received pretreatment with puerarin. For in vitro experiments, BV2 cells were pre-incubated with puerarin for 2 h before LPS exposure. We employed network pharmacology, the Morris Water Maze (MWM) test, Novel Object Recognition (NOR) test, immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA), Western blotting, and quantitative real-time PCR (qRT-PCR) to elucidate the molecular mechanism of underlying puerarin's effects in SAE treatment. RESULTS: Our findings demonstrate that puerarin significantly reduced the production of inflammatory cytokines (TNF-α and IL-6) in the peripheral blood of LPS-treated mice. Moreover, puerarin treatment markedly ameliorated sepsis-associated cognitive impairment. Puerarin also exhibited inhibitory effects on the release of TNF-α and IL-6 from microglia, thereby preventing hippocampal neuronal cell death. Network pharmacology analysis identified AKT1 as a potential therapeutic target for puerarin in SAE treatment. Subsequently, we validated these results in both in vitro and in vitro experiments. Our study conclusively demonstrated that puerarin reduced LPS-induced phosphorylation of AKT1, with the AKT activator SC79 reversing puerarin's anti-inflammatory effects through the activation of the AKT1 signaling pathway. CONCLUSION: Puerarin exerts an anti-neuroinflammatory effect against SAE by modulating the AKT1 pathway in microglia.


Asunto(s)
Encefalopatía Asociada a la Sepsis , Ratones , Animales , Encefalopatía Asociada a la Sepsis/tratamiento farmacológico , Encefalopatía Asociada a la Sepsis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Microglía , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo
2.
Tissue Cell ; 81: 102039, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36805774

RESUMEN

BACKGROUND: Accumulation of glutamate damages neurons via the reactive oxygen species (ROS) injury, which was involved in the development of neurodegenerative diseases. However, the mechanism of neuronal oxidative stress damage caused by glutamate and the intervention targets still needs to be further studied. This study explored whether 5' adenosine monophosphate-activated protein kinase (AMPK)-induced glucose metabolic and mitochondrial dysfunction were related to glutamate-dependent ROS injury of the neuron. METHODS: Neuronal oxidative stress injury was induced by glutamate treatment in HT-22 cells. Western blotting was used to evaluate the phosphorylation of the AMPK. The XF24 Flux Analyzer was used to measure the effect of glutamate and Compound C (a well-known pharmacological inhibitor of AMPK phosphorylation) on the cellular oxygen consumption rate (OCR) of HT-22 cells. Glucose uptake, intracellular ROS, mitochondrial potential, apoptosis and cell viability were quantified using biochemical assays. RESULTS: Glutamate caused the phosphorylation of AMPK and subsequently promoted the glucose uptake. Furthermore, AMPK-mediated glucose uptake enhanced OCR and increased the intracellular ROS levels in neurons. The pharmacological inhibition of AMPK phosphorylation by Compound C attenuated glutamate-induced toxicity in HT22 cells by regulating the glucose uptake/mitochondrial respiration/ROS pathway. CONCLUSIONS: The AMPK phosphorylation/glucose uptake/mitochondrial respiration/ROS pathway was involved in glutamate-induced excitotoxic injury in HT22 cells. The inhibition of AMPK phosphorylation may be a potential target for the development of therapeutic agents for treating the glutamate-induced neurotoxicity.


Asunto(s)
Ácido Glutámico , Fármacos Neuroprotectores , Especies Reactivas de Oxígeno/metabolismo , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Línea Celular , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo , Apoptosis , Mitocondrias/metabolismo , Glucosa/metabolismo
3.
World J Emerg Med ; 14(1): 10-16, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36713343

RESUMEN

BACKGROUND: Endothelial dysfunction in sepsis is a pathophysiological feature of septic organ failure. Endothelial cells (ECs) exhibit specific metabolic traits and release metabolites to adapt to the septic state in the blood to maintain vascular homeostasis. METHODS: Web of Science and PubMed were searched from inception to October 1, 2022. The search was limited to the English language only. Two reviewers independently identified studies related to EC metabolism in sepsis. The exclusion criteria were duplicate articles according to multiple search criteria. RESULTS: Sixty articles were included, and most of them were cell and animal studies. These studies reported the role of glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism in EC homeostasis. including glycolysis, oxidative phosphorylation, fatty acid metabolism and amino acid metabolism. However, dysregulation of EC metabolism can contribute to sepsis progression. CONCLUSION: There are few clinical studies on EC metabolism in sepsis. Related research mainly focuses on basic research, but some scientific problems have also been clarified. Therefore, this review may provide an overall comprehension and novel aspects of EC metabolism in sepsis.

4.
Acta Pharmacol Sin ; 42(7): 1069-1079, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33758353

RESUMEN

Sepsis is life-threatening organ dysfunction due to dysregulated systemic inflammatory and immune response to infection, often leading to cognitive impairments. Growing evidence shows that artemisinin, an antimalarial drug, possesses potent anti-inflammatory and immunoregulatory activities. In this study we investigated whether artemisinin exerted protective effect against neurocognitive deficits associated with sepsis and explored the underlying mechanisms. Mice were injected with LPS (750 µg · kg-1 · d-1, ip, for 7 days) to establish an animal model of sepsis. Artemisinin (30 mg · kg-1 · d-1, ip) was administered starting 4 days prior LPS injection and lasting to the end of LPS injection. We showed that artemisinin administration significantly improved LPS-induced cognitive impairments assessed in Morris water maze and Y maze tests, attenuated neuronal damage and microglial activation in the hippocampus. In BV2 microglial cells treated with LPS (100 ng/mL), pre-application of artemisinin (40 µΜ) significantly reduced the production of proinflammatory cytokines (i.e., TNF-α, IL-6) and suppressed microglial migration. Furthermore, we revealed that artemisinin significantly suppressed the nuclear translocation of NF-κB and the expression of proinflammatory cytokines by activating the AMPKα1 pathway; knockdown of AMPKα1 markedly abolished the anti-inflammatory effects of artemisinin in BV2 microglial cells. In conclusion, atemisinin is a potential therapeutic agent for sepsis-associated neuroinflammation and cognitive impairment, and its effect is probably mediated by activation of the AMPKα1 signaling pathway in microglia.


Asunto(s)
Artemisininas/uso terapéutico , Microglía/efectos de los fármacos , Trastornos Neurocognitivos/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Sepsis/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Antiinflamatorios/uso terapéutico , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/patología , Muerte Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/etiología , Inflamación/metabolismo , Lipopolisacáridos , Masculino , Ratones Endogámicos C57BL , Microglía/metabolismo , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Trastornos Neurocognitivos/etiología , Trastornos Neurocognitivos/metabolismo , Neuronas/efectos de los fármacos , Sepsis/inducido químicamente , Sepsis/complicaciones , Sepsis/metabolismo
5.
Cell Mol Neurobiol ; 40(7): 1231-1242, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32140899

RESUMEN

Recent studies demonstrated that FoxO3 circular RNA (circFoxO3) plays an important regulatory role in tumourigenesis and cardiomyopathy. However, the role of circFoxO3 in neurodegenerative diseases remains unknown. The aim of this study was to examine the possible role of circFoxO3 in neurodegenerative diseases and the underlying mechanisms. To model human neurodegenerative conditions, hippocampus-derived neurons were treated with glutamate. Using molecular and cellular biology approaches, we found that circFoxO3 expression was significantly higher in the glutamate treatment group than that in the control group. Furthermore, silencing of circFoxO3 protected HT22 cells from glutamate-induced oxidative injury through the inhibition of the mitochondrial apoptotic pathway. Collectively, our study demonstrates that endogenous circFoxO3 plays a key role in inducing apoptosis and neuronal cell death and may act as a novel therapeutic target for neurodegenerative diseases.


Asunto(s)
Apoptosis/efectos de los fármacos , Ácido Glutámico/farmacología , Hipocampo/metabolismo , Mitocondrias/metabolismo , ARN Circular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Apoptosis/fisiología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Proteína Forkhead Box O3/genética , Ácido Glutámico/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA