Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 279(Pt 3): 135311, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236948

RESUMEN

Magnetic lignin nanoparticles (MLNs) were prepared by inducing their self-assembly through lignin regeneration in the [N-methyl-2-pyrrolidone][C1-C4 carboxylic acid] ionic liquids ([NMP]ILs), which are low-cost protic ionic liquid. [NMP]ILs are self-assembling solvent that can enhance the adsorption capacity of MLNs to a greater degree than tetrahydrofuran or H2O. Additionally, the anion types of [NMP]IL greatly influence the physiochemical properties of MLNs. The MLNs prepared through self-assembly with [NMP][formate] (MLN/[NMP][For]) exhibited a higher maximum adsorption capacity (134.53 mg/g) than the [NMP]ILs of C2-C4 carboxylate anions. MLN/[NMP][For] demonstrated stable adsorption within a pH range of 6-10 or at high salt concentrations (0.01-0.5 mol/L), retaining over 80 % of its regeneration efficiency after 5 cycles. In addition, MLN/[NMP][For] selectively removed cationic dyes in mixed binary anionic-cationic dye solutions. This work demonstrated the feasibility of preparing magnetic biosorbents with good selectivity and stability though regeneration and by adjusting the anions of ionic liquids.

2.
RSC Adv ; 14(33): 23606-23620, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39077309

RESUMEN

The cost-effective and green separation of dye pollutants from wastewater is of great importance in environmental remediation. Industrial seaweed residue (SR), as a low-cost cellulose source, was used to produce carboxylated nanorized-SR (NSR) via oxalic acid (OA)-water pretreatments followed by ultrasonic disintegration. Fourier transform infrared spectroscopy, X-ray polycrystalline diffraction, nitrogen isotherms, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, X-ray photoelectron spectrometry, particle charge detection, zeta potential and retro titration experiments were utilized to explore the physiochemical properties of samples. The NSRs with carboxyl content of 4.58-6.73 mmol g-1 were prepared using 10-60% OA-water pretreatment. In the case of 20% OA-water pretreatment, the highest NSR yield (73.9%) and nanocellulose content (80.2%) were obtained. Through self-assembly induced by the electrostatic interaction, magnetic NSR composite adsorbents (MNSRs) were prepared with the combination of NSR and Fe3O4 nanoparticles (NPs). The carboxylated NSR with negative charge demonstrated good affinity for Fe3O4 NPs. The Fe3O4 NPs were perfectly microencapsulated with the NSR when the NSR/Fe3O4 mass ratio was higher than 1/1. The adsorption properties of the MNSR for methylene blue (MB) removal from aqueous solution were investigated. The adsorbent with NSR/Fe3O4 mass ratio of 1/1 (MNSR1/1) exhibited optimum performance in terms of the magnetic properties and adsorption capacity. The MNSR1/1 showed high adsorption ability in a pH ≥7 environment. According to the Langmuir fitting, the maximum adsorption capacity of MNSR1/1 for MB reached 184.25 mg g-1. The adsorption of MB complies with the pseudo-second-order kinetic model. MNSR1/1 still maintained good adsorption properties after the fifth cycle of adsorption-desorption. MNSR1/1 could selectively adsorb cationic dye (i.e., MB and methyl violet) from wastewater, with hydrogen bonding and electrostatic interaction as the main force.

3.
RSC Adv ; 13(50): 35629-35638, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38077984

RESUMEN

Pretreatments with aqueous protic ionic liquid (PIL)-ethanolamine bis(oxalate) ([MEA][(HOA)(H2OA)]), combined with ultrasonic disintegration, were employed in cellulose nanofibril (CNF) production from pulp fibers. The optimization of pretreatment parameters is crucial for obtaining the maximum CNF yield. The response surface methodology was used to design the pretreatment conditions for preparing CNFs. This method consists of four factors: pretreatment time (A, 2-4 h), pretreatment temperature (B, 100-120 °C), liquid-to-solid ratio (C, 60-80 g g-1), and PIL content (D, 20-40%). The predicted CNF yield (Y) followed a quadratic multinomial regression equation represented by Y = 84.43 + 3.59A + 8.22B + 2.22C - 2.13D - 0.85AB + 2.83AC + 5.95AD + 0.43BC - 2.98BD + 4.25CD - 6.04A2 - 18.23B2 - 4.98C2 - 7.39D2. The regression equation exhibited high model fit to the experimental CNF yields as evidenced by a determination coefficient of 0.9764. Results showed that a maximum CNF yield of 86.2% was obtained in the case with the following conditions: pretreatment temperature of 112 °C, pretreatment time of 3.2 h, liquid-to-solid ratio of 83 g g-1, and PIL content of 29%. CNFs with high crystalline index (64.0%) and thermal stability (Tmax = 348 °C) were prepared. This work favors the development of low cost PIL-based pretreatment systems for the clean production of CNFs.

4.
Bioresour Technol ; 357: 127333, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35598774

RESUMEN

The aerobic oxidation of lignin model 2-phenoxyacetophenone (2-PAP) in cooperative ionic liquid mixtures (CoILs) with 1-ethyl-3-methylimidazolium acetate ([C2C1im]OAc) and 1-benzyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BZC1im]NTf2) was investigated. Complete degradation of 2-PAP was achieved with [C2C1im]OAc/[BZC1im]NTf2 molar ratio (RIL) of 1/1 and 1/2 at 100 °C for 2 h. The conversion and product yields from CoILs were higher than those in pure ILs, indicating the cooperative effects of [C2C1im]OAc/[BZC1im]NTf2 on cleaving aryl-ether bonds. [C2C1im]OAc promoted the catalytic cleavage of aryl-ether bonds and solvation, and [BZC1im]NTf2 induced the formation of alkyl radicals and enhanced the product selectivity. Accordingly, the highest conversion of alkali lignin (79.8%) was obtained with RIL of 5/1 at 100 °C for 2 h, and phenol monomers (306 mg/g) were selectively produced. The CoILs exhibited good catalytic capacities for oxidative depolymerization of lignin, which strongly depends on the changes in intermolecular interactions and structural organization with varying RIL.


Asunto(s)
Líquidos Iónicos , Éteres , Líquidos Iónicos/química , Lignina/química , Oxidación-Reducción , Estrés Oxidativo
5.
Bioresour Technol ; 331: 125064, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33812746

RESUMEN

This work investigated the role of formaldehyde (FA) in lignin anti-condensation during corn stalk pretreatment based on 1-butyl-3-methylimidazolium chloride ([C4C1im]Cl)/hydrochloric acid (HCl). As a result of the aldolization reactions between FA and lignin, the condensation of lignin fragments was inhibited, and lignin remained in soluble fragmental molecules. Characterizations on the compositional and structural changes of lignin and its degraded products during pretreatment (80 °C-100 °C, 2-5 h) with FA addition in comparison with those in DO/HCl/FA or [C4C1im]Cl/HCl were conducted. Results revealed that the structural features of lignin were affected by FA addition and solvent type. In the [C4C1im]Cl/HCl/FA system, FA stabilization was unfavorable for the cleavage of ß-O-4' bonds and lignin with low S/G ratio (3.4) and high molecular weight (Mw = 9920 g·mol-1) was extracted. The compositions of degraded products were considerably affected by FA addition.


Asunto(s)
Líquidos Iónicos , Biomasa , Formaldehído , Ácido Clorhídrico , Hidrólisis , Lignina , Ríos , Zea mays
6.
Int J Biol Macromol ; 183: 285-294, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33894259

RESUMEN

The oxidative depolymerization of alkali lignin (AL) in 1-ethyl-3-methylimidazolium acetate ([C2C1im]OAc) system without additional catalyst was investigated under mild conditions (initial O2 pressure of 1.5 MPa, 80 °C-100 °C). Compared with other ionic liquids (ILs), the cooperation of imidazolium cation and acetate anion successfully enhanced AL conversion. Among the investigated imidazolium acetate ILs with ethyl- to octyl-side chains, [C2C1im]OAc presented the best catalytic capacity for AL oxidative depolymerization. Adding an appropriate amount of water to [C2C1im]OAc can further improve the reaction efficiency. In the [C2C1im]OAc system with the addition of 0.10-0.25 mL of water, approximately 77 wt% AL was depolymerized into small molecule soluble products at 100 °C for 2 h. The extracted oil was composed mainly of phenolic derived compounds. With the use of the [C2C1im]OAc-based system, the specific inter-unit linkages of lignin were broken down, and residual lignin with low molecular weight and narrow polydispersity index (1.88-1.96) was obtained. Compared with that in AL conversion with fresh [C2C1im]OAc, only a minimal decrease (~3.2%) was observed with the recovered IL until the fifth cycle. These findings revealed that [C2C1im]OAc-based system is a simple and efficient catalytic system for lignin oxidative depolymerization.


Asunto(s)
Imidazoles/química , Líquidos Iónicos/química , Catálisis , Lignina/química , Oxidación-Reducción , Estrés Oxidativo
7.
Int J Biol Macromol ; 141: 1055-1064, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31499106

RESUMEN

Water addition was found to enhance the thermal stability of alkylimidazolium-acetate ionic liquids (ILs). Especially in the case of high water content (30-50 wt%), few decomposition products can be observed in the 1H NMR spectra even after treatment for 24 h at 150 °C. On the basis of this finding, lignin treatment of water and acetate IL mixtures (50-90 wt% IL content) were investigated at 150 °C. The addition of water, as opposed to pure IL treatment, can inhibit the lignin depolymerization into small fragments. Lignin degradation and the structure of regenerated lignin are more affected by cation types of ILs rather than the IL contents and pH values. In the case of 50-70 wt% 1-ethyl-3-methylimidazolium acetate-water system, the specific inter-unit linkages of lignin can be broken down, and regenerated lignin with a narrow polydispersity index (5.0-9.6) can be obtained.


Asunto(s)
Imidazoles/química , Líquidos Iónicos/química , Lignina/química , Temperatura , Agua/química , Peso Molecular , Teoría Cuántica
8.
Bioresour Technol ; 196: 509-17, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26282782

RESUMEN

The treatment of enzymatically hydrolyzed lignin (EHL) in dialkylimidazolium-based ionic liquid (IL)-water mixtures (50-100wt% IL content) was investigated at 150°C for 3h. pH, IL type, and IL content were found to greatly influence the degradation of lignin and the structure of regenerated lignin. 1-Butyl-3-methylimidazolium methylsulfonate-water mixtures with low pH facilitated lignin depolymerization but destroyed the regenerated lignin substructure. Regenerated lignin with low molecular weight and narrow polydispersity index (2.2-7.7) was obtained using a 1-butyl-3-methylimidazolium acetate-based system. Water addition inhibited lignin depolymerization at 50-100wt% IL content, except for 70wt% 1-butyl-3-methylimidazolium chloride-water mixture. Compared with pure IL treatment, obvious differences were observed in the breakdown of inter-unit linkages and ratio of syringyl to guaiacyl units in regenerated lignin with IL-water treatment.


Asunto(s)
Imidazoles/química , Líquidos Iónicos/química , Lignina/química , Hidrólisis , Polimerizacion , Agua
9.
Bioresour Technol ; 170: 499-505, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25164342

RESUMEN

Lignin dissolution in dialkylimidazolium-based ionic liquid (IL)-water mixtures (40wt%-100wt% IL content) at 60°C was investigated. The IL content and type are found to considerably affect lignin solubility. For the IL-water mixtures except 1-butyl-3-methylimidazolium tetrafluoroborate ([C4C1im]BF4), the maximum lignin solubility can be achieved at 70wt% IL content. Lignin solubility in IL-water mixtures with different cations follows the order 1-butyl-3-methylimidazolium ([C4C1im](+))>1-hexyl-3-methylimidazolium ([C6C1im](+))>1-ethyl-3-methylimidazolium ([C2C1im](+))>1-octyl-3-methylimidazolium ([C8C1im](+))>1-butyl-3-ethylimidazolium ([C4C2im](+))>1-butyl-3-propylimidazolium ([C4C3im](+)). For IL mixtures with different anions, lignin solubility decreases in the following order: methanesulfonate (MeSO3(-))>acetate (MeCO2(-))>bromide (Br(-))>dibutylphosphate (DBP(-)). Evaluation using the theory of Hansen solubility parameter (HSP) is consistent with the experimental results, suggesting that HSP can aid in finding the appropriate range of IL content for IL-water mixtures. However, HSP cannot be used to evaluate the effect of IL type on lignin solubility.


Asunto(s)
Imidazoles/química , Líquidos Iónicos/química , Lignina/química , Aniones/química , Microscopía , Modelos Químicos , Solubilidad
10.
Carbohydr Polym ; 98(1): 736-43, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23987406

RESUMEN

A novel adsorbent, biodegradable collagen/cellulose hydrogel beads (CCHBs), was prepared by reconstitution from a 1-butyl, 3-methylimidazolium chloride ([C4mim]Cl) solution. The adsorption properties of the CCHBs for Cu(II) ion removal from aqueous solutions were investigated and compared with those of cellulose hydrogel beads (CHBs). The CCHBs have a three-dimensional macroporous structure whose amino groups are believed to be the main active binding sites of Cu(II) ions. The equilibrium adsorption capacity (qe) of the CCHBs is greatly influenced by the collagen/cellulose mass ratio, and steeply increases until the collagen/cellulose mass ratio exceeds 2/1. The maximum adsorption is obtained at pH 6. The qe of Cu(II) ions increases with increased initial concentration of the solution. Based on Langmuir isotherms, the maximum adsorption capacity (qm) of CCHB3 (collagen/cellulose mass ratio of 3/1) is 1.06 mmol/g. The CCHBs maintain good adsorption properties after the fourth cycle of adsorption-desorption.


Asunto(s)
Celulosa/química , Colágeno/química , Cobre/química , Hidrogeles/química , Imidazoles/química , Líquidos Iónicos/química , Microesferas , Adsorción , Concentración de Iones de Hidrógeno , Soluciones , Factores de Tiempo
11.
Se Pu ; 31(2): 143-6, 2013 Feb.
Artículo en Chino | MEDLINE | ID: mdl-23697179

RESUMEN

An inverse gas chromatographic (IGC) method has been used to measure the solubility parameters (delta2) of organosolv lignin at the absolute temperatures from 333.15 K to 373.15 K. The test probe solvents were n-octane (n-C8), n-decane (n-C10), n-dodecane (n-C12), and n-tetradecane (n-C14). The specific retention volumes of the solvents (Vg0), the molar enthalpy of sorption (deltaH1S), the partial molar enthalpy of mixing at infinite dilution (deltaH1infinity), the molar enthalpy of vaporization (deltaHv), the activity coefficients at infinite dilution (Omega1- infinity), and Flory-Huggins inter action parameters (chi12infinity) between organosolv lignin and probe solvents were obtained. The results showed that the above four probes are poor solvents for organosolv lignin; at the same temperature, the chi12infinity reduced with the increase of the carbon number of probe solvents. The average solubility parameter of organosolv lignin was determined as 19.03 (J x cm(-3))1/2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA