Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Pathog Ther ; 2(3): 135-141, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39027143

RESUMEN

Dostarlimab, a programmed death receptor-1 (PD-1)-blocking IgG4 humanized monoclonal antibody, gained accelerated approval from the US Food and Drug Administration (FDA) in April 2021, and received a full approval in February 2023. Dostarlimab was approved for treating adult patients with mismatch repair deficient (dMMR) recurrent or advanced endometrial cancer (EC) that progressed during or after prior treatment who have no other suitable treatment options. Herein, we review the structure-based mechanism of action of dostarlimab and the results of a clinical study (GARNET; NCT02715284) to comprehensively clarify the efficacy and toxicity of the drug. The efficacy and safety of dostarlimab as monotherapy was assessed in a non-randomized, multicenter, open-label, multi-cohort trial that included 209 patients with dMMR recurrent or advanced solid tumors after receiving systemic therapy. Patients received 500 mg of dostarlimab intravenously every three weeks until they were given four doses. Then, patients received 1000 mg dostarlimab intravenously every six weeks until disease progression or unacceptable toxicity. The overall response rate, as determined by shrinkage in tumor size, was 41.6% (95% confidence interval [CI]; 34.9, 48.6), with 34.7 months as the median response duration. In conclusion, dostarlimab is an immunotherapy-based drug that has shown promising results in adult patients with recurrent or advanced dMMR EC. However, its efficacy in other cancer subtypes, the development of resistance to monotherapy, and efficacy and safety in combination with other immunotherapeutic drugs have not yet been studied.

2.
Adv Sci (Weinh) ; 11(30): e2307765, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38898730

RESUMEN

Multi-drug resistance (MDR) is a major cause of cancer therapy failure. Photodynamic therapy (PDT) is a promising modality that can circumvent MDR and synergize with chemotherapies, based on the generation of reactive oxygen species (ROS) by photosensitizers. However, overproduction of glutathione (GSH) by cancer cells scavenges ROS and restricts the efficacy of PDT. Additionally, side effects on normal tissues are unavoidable after PDT treatment. Here, to develop organic systems that deliver effective anticancer PDT and chemotherapy simultaneously with very little side effects, three GSH-sensitive photosensitizer-drug conjugates (CyR-SS-L) are designed and synthesized. CyR-SS-L localized in the mitochondria then is cleaved into CyR-SG and SG-L parts by reacting with and consuming high levels of intracellular GSH. Notably, CyR-SG generates high levels of ROS in tumor cells instead of normal cells and be exploited for PDT and the SG-L part is used for chemotherapy. CyR-SS-L inhibits better MDR cancer tumor inhibitory activity than indocyanine green, a photosensitizer (PS) used for PDT in clinical applications. The results appear to be the first to show that CyR-SS-L may be used as an alternative PDT agent to be more effective against MDR cancers without obvious damaging normal cells by the combination of PDT, GSH depletion, and chemotherapy.


Asunto(s)
Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Glutatión , Mitocondrias , Fotoquimioterapia , Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/farmacología , Glutatión/metabolismo , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fotoquimioterapia/métodos , Animales , Ratones , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Modelos Animales de Enfermedad , Antineoplásicos/farmacología
3.
Artículo en Inglés | MEDLINE | ID: mdl-38204268

RESUMEN

BACKGROUND: Chromosomal rearrangements involving the Mixed lineage leukemia (MLL) gene are observed in acute leukemia (AL) patients, which have poor prognosis, especially in infants. Hence, there is still a challenge to develop other effective agents to treat AL with MLL rearrangements (MLLr). MLL has been shown to rearrange with partner genes, of which the most frequently observed are AF4 and AF9. Moreover, AL is characterized by a differentiation blockage resulting in the accumulation of immature cells. An ent-kaurene diterpenoid compound, Jiyuan Oridonin A (JOA), has been shown to reduce the viability of AML cells by differentiation. METHODS: We aimed to evaluate the effect of JOA on the growth and differentiation of AL cells (SEM, JURKAT and MV4-11) including cells with MLLr-AF4 by cell proliferation assay, colony formation assay, cell cycle analysis, cell apoptosis analysis, measurement of cell surface antigens, cell morphology, mRNA-sequencing analysis, quantitative Real-time PCR and Western blotting analysis. RESULTS: Our findings demonstrated that the proliferation of AL cells including cells with MLLr-AF4 was significantly suppressed by JOA, which induced cell differentiation followed by G0/G1 cell cycle withdrawal. Moreover, JOA-mediated cell differentiation was likely due to activation of G-CSFR in MV4-11 cells. CONCLUSION: Our results suggest that JOA may be considered a promising anti-leukemia compound to develop to surmount the differentiation block in AL patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA