Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Surg ; 110(5): 2669-2678, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38445459

RESUMEN

BACKGROUND: Occult peritoneal metastases (OPM) in patients with pancreatic ductal adenocarcinoma (PDAC) are frequently overlooked during imaging. The authors aimed to develop and validate a computed tomography (CT)-based deep learning-based radiomics (DLR) model to identify OPM in PDAC before treatment. METHODS: This retrospective, bicentric study included 302 patients with PDAC (training: n =167, OPM-positive, n =22; internal test: n =72, OPM-positive, n =9: external test, n =63, OPM-positive, n =9) who had undergone baseline CT examinations between January 2012 and October 2022. Handcrafted radiomics (HCR) and DLR features of the tumor and HCR features of peritoneum were extracted from CT images. Mutual information and least absolute shrinkage and selection operator algorithms were used for feature selection. A combined model, which incorporated the selected clinical-radiological, HCR, and DLR features, was developed using a logistic regression classifier using data from the training cohort and validated in the test cohorts. RESULTS: Three clinical-radiological characteristics (carcinoembryonic antigen 19-9 and CT-based T and N stages), nine HCR features of the tumor, 14 DLR features of the tumor, and three HCR features of the peritoneum were retained after feature selection. The combined model yielded satisfactory predictive performance, with an area under the curve (AUC) of 0.853 (95% CI: 0.790-0.903), 0.845 (95% CI: 0.740-0.919), and 0.852 (95% CI: 0.740-0.929) in the training, internal test, and external test cohorts, respectively (all P <0.05). The combined model showed better discrimination than the clinical-radiological model in the training (AUC=0.853 vs. 0.612, P <0.001) and the total test (AUC=0.842 vs. 0.638, P <0.05) cohorts. The decision curves revealed that the combined model had greater clinical applicability than the clinical-radiological model. CONCLUSIONS: The model combining CT-based DLR and clinical-radiological features showed satisfactory performance for predicting OPM in patients with PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Aprendizaje Profundo , Neoplasias Pancreáticas , Neoplasias Peritoneales , Tomografía Computarizada por Rayos X , Humanos , Neoplasias Peritoneales/diagnóstico por imagen , Neoplasias Peritoneales/secundario , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/secundario , Carcinoma Ductal Pancreático/patología , Masculino , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Anciano , Adulto , Radiómica
2.
Radiol Med ; 129(1): 1-13, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37861978

RESUMEN

PURPOSE: To evaluate the utility of dual-energy CT (DECT) in differentiating non-hypervascular pancreatic neuroendocrine neoplasms (PNENs) from pancreatic ductal adenocarcinomas (PDACs) with negative carbohydrate antigen 19-9 (CA 19-9). METHODS: This retrospective study included 26 and 39 patients with pathologically confirmed non-hypervascular PNENs and CA 19-9-negative PDACs, respectively, who underwent contrast-enhanced DECT before treatment between June 2019 and December 2021. The clinical, conventional CT qualitative, conventional CT quantitative, and DECT quantitative parameters of the two groups were compared using univariate analysis and selected by least absolute shrinkage and selection operator regression (LASSO) analysis. Multivariate logistic regression analyses were performed to build qualitative, conventional CT quantitative, DECT quantitative, and comprehensive models. The areas under the receiver operating characteristic curve (AUCs) of the models were compared using DeLong's test. RESULTS: The AUCs of the DECT quantitative (based on normalized iodine concentrations [nICs] in the arterial and portal venous phases: 0.918; 95% confidence interval [CI] 0.852-0.985) and comprehensive (based on tumour location and nICs in the arterial and portal venous phases: 0.966; 95% CI 0.889-0.995) models were higher than those of the qualitative (based on tumour location: 0.782; 95% CI 0.665-0.899) and conventional CT quantitative (based on normalized conventional CT attenuation in the arterial phase: 0.665; 95% CI 0.533-0.797; all P < 0.05) models. The DECT quantitative and comprehensive models had comparable performances (P = 0.076). CONCLUSIONS: Higher nICs in the arterial and portal venous phases were associated with higher blood supply improving the identification of non-hypervascular PNENs.


Asunto(s)
Carcinoma Ductal Pancreático , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Humanos , Tomografía Computarizada por Rayos X , Estudios Retrospectivos , Medios de Contraste
3.
Quant Imaging Med Surg ; 13(8): 4933-4942, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37581088

RESUMEN

Background: Non-invasive glycogen quantification in vivo could provide crucial information on biological processes for glycogen storage disorder. Using dual-energy computed tomography (DECT), this study aimed to assess the viability of quantifying glycogen content in vitro. Methods: A fast kilovolt-peak switching DECT was used to scan a phantom containing 33 cylinders with different proportions of glycogen and iodine mixture at varying doses. The virtual glycogen concentration (VGC) was then measured using material composition images. Additionally, the correlations between VGC and nominal glycogen concentration (NGC) were evaluated using least-square linear regression, then the calibration curve was constructed. Quantitative estimation was performed by calculating the linearity, conversion factor (inverse of curve slope), stability, sensitivity (limit of detection/limit of quantification), repeatability (inter-class correlation coefficient), and variability (coefficient of variation). Results: In all conditions, excellent linear relationship between VGC and NGC were observed (P<0.001, coefficient of determination: 0.989-0.997; residual root-mean-square error of glycogen: 1.862-3.267 mg/mL). The estimated conversion factor from VGC to NGC was 3.068-3.222. In addition, no significant differences in curve slope were observed among different dose levels and iodine densities. The limit of detection and limit of quantification had respective ranges of 6.421-15.315 and 10.95-16.46 mg/mL. The data demonstrated excellent scan-repeat scan agreement (inter-class correlation coefficient, 0.977-0.991) and small variation (coefficient of variation, 0.1-0.2%). Conclusions: The pilot phantom analysis demonstrated the feasibility and efficacy of detecting and quantifying glycogen using DECT and provided good quantitative performance with significant stability and reproducibility/variability. Thus, in the future, DECT could be used as a convenient method for glycogen quantification to provide more reliable information for clinical decision-making.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...