Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Analyst ; 149(7): 2045-2050, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38407274

RESUMEN

Copper ions (Cu2+) play an essential role in various cellular functions, including respiration, nerve conduction, tissue maturation, oxidative stress defense, and iron metabolism. Covalent organic frameworks (COFs) are a class of porous crystalline materials with directed structural designability and high stability due to the combination of different monomers through covalent bonds. In this study, we synthesized a porphyrin-tetrathiazole COF (TT-COF(Zn)) with Zn-porphyrin and tetrathiafulvalene (TTF) as monomers and used it as a photoactive material. The strong light absorption of metalloporphyrin and the electron-rich properties of supplied TTF contribute to its photoelectrochemical performance. Additionally, the sulfur (S) in the TTF can coordinate with Cu2+. Based on these properties, we constructed a highly sensitive photoelectrochemical sensor for detecting Cu2+. The sensor exhibited a linear range from 0.5 nM to 500 nM (R2 = 0.9983) and a detection limit of 0.15 nM for Cu2+. Notably, the sensor performed well when detecting Cu2+ in water samples.

2.
Anal Chim Acta ; 1283: 341975, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37977793

RESUMEN

Sensitive and convenient determination of gallic acid (GA) is vital for food safety. Here, a novel porphyrin (Cu)-based covalent organic framework named as COF(Cu) was successfully synthesized by condensing pre-metalated 5,10,15,20-tetrakis (para-aminophenyl) porphyrin copper (II) and 2,3,6,7-tetra (4-formylphenyl) tetrathiafulvalene ligands. By combining the advantages of porphyrin with tetrathiafulvalene, it may be possible to create a COF with an intrinsically effective charge-transfer channel. In addition, the Cu-N4 type in the COF(Cu) can be regarded as the single-site electrocatalyst. Benefiting from these advantages, the COF(Cu) based electrochemical sensor demonstrated outstanding response to gallic acid (GA). Under the optimal conditions by square wave voltammetry technique, the COF(Cu) modified electrode showed a wide linear range (0.01-1000 µM), a low detection limit (2.81 nM), good reproducibility, acceptable selectivity as well as high stability. Moreover, the established approach was adopted to detect GA in real tea samples with good recoveries, indicating that the COF(Cu) based electrochemical sensor may pave the way for the application in food analysis.

3.
Small ; 19(5): e2206724, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36436832

RESUMEN

The discovery and in-depth study of non-biocatalytic applications of active biomolecules are essential for the development of biomimicry. Here, the effect of intermolecular hydrogen-bonding traction on the CO2 photoactivation performance of adenine nucleobase by means of an adenine-containing model system (AMOF-1-4) is uncovered. Remarkably, the hydrogen-bonding schemes around adenines are regularly altered with the increase in the alkyl (methyl, ethyl, isopropyl, and tert-butyl) electron-donating capacity of the coordinated aliphatic carboxylic acids, and thus, lead to a stepwise improvement in CO2 photoreduction activity. Density functional theory calculations demonstrate that strong intermolecular hydrogen-bonding traction surrounding adenine can obviously increase the adenine-CO2 interaction energy and, therefore, result in a smoother CO2 activation process. Significantly, this work also provides new inspiration for expanding the application of adenine to more small-molecule catalytic reactions.


Asunto(s)
Adenina , Dióxido de Carbono , Tracción , Enlace de Hidrógeno , Catálisis
4.
Front Chem ; 10: 892919, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646815

RESUMEN

An electrochemical sensor for sensitive sensing of acyclovir (ACV) was designed by using the reduced graphene oxide-TiO2-Au nanocomposite-modified glassy carbon electrode (rGO-TiO2-Au/GCE). Transmission electron microscopy, X-ray diffractometer, and X-ray photoelectron spectroscopy were used to confirm morphology, structure, and composition properties of the rGO-TiO2-Au nanocomposites. Cyclic voltammetry and linear sweep voltammetry were used to demonstrate the analytical performance of the rGO-TiO2-Au/GCE for ACV. As a result, rGO-TiO2-Au/GCE exerted the best response for the oxidation of ACV under the pH of 6.0 PB solution, accumulation time of 80 s at open-circuit, and modifier amount of 7 µl. The oxidation peak currents of ACV increased linearly with its concentration in the range of 1-100 µM, and the detection limit was calculated to be 0.3 µM (S/N = 3). The determination of ACV concentrations in tablet samples also demonstrated satisfactory results.

5.
Mikrochim Acta ; 189(6): 241, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35648245

RESUMEN

A novel deep-ultraviolet and dual-emission carbon nanodots (DUCDs)-based dual-channel ratiometric probe was prepared by a one-pot environmental-friendly hydrothermal process using guanidine as the only starting material for sensing polyphenol in tea sample (TPPs). Under the exposure to TPPs, the DUCDs not only provided a characteristic colorimetric response to TPPs, but also displayed TPPs-sensitive ratiometric fluorescence quenching. The detection mechanism was proved to be that enrichment-specific hydroxyl sites (e.g., -NH2 and -COOH) of DUCDs can specifically react with phenolic hydroxyl groups of TPPs to generate dynamic amide and carboxylate bonds by dehydration and/or condensation reaction. As a result, a new carbon nanomaterial with decrement of surface passivation groups, inherent light-absorbing, and invalid fluorescence emission was generated. The ratio (FL297nm/FL395nm) of fluorescence intensity at 297 nm and 395 nm of DUCDs excited at 275 nm decreased with increasing TPPs concentration. The linearity range was 5.0 ng/mL to 100 µg/mL with a detection limit (DL) of 3.5 ± 0.04 ng/mL for TPPs (n = 3, 3σ/k). Colorimetry of DUCDs, best measured as absorbance at 320 nm, was increased linearly in the TPP concentration range 200 ng/mL-200 µg/mL with a DL of 94.7 ± 0.04 ng/mL (n = 3, 3σ/k). The probe was successfully applied to the determination of TPPs in real tea samples, showing potential application prospects in food analysis.


Asunto(s)
Carbono , Puntos Cuánticos , Carbono/química , Colorantes Fluorescentes/química , Polifenoles , Puntos Cuánticos/química ,
6.
Angew Chem Int Ed Engl ; 60(18): 10147-10154, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33511739

RESUMEN

Multidimensional fabrication of metal-organic frameworks (MOFs) into multilevel channel integrated devices are in high demanded for Li-S separators. Such separators have advantages in pore-engineering that might fulfill requirements such as intercepting the diffusing polysulfides and improving the Li+ /electrolyte transfer in Li-S batteries. However, most reported works focus on the roles of MOFs as ionic sieves for polysulfides while offering limited investigation on the tuning of Li+ transfer across the separators. A photoinduced heat-assisted processing strategy is proposed to fabricate MOFs into multidimensional devices (e.g., hollow/Janus fibers, double-or triple-layer membranes). For the first time, a triple-layer separator with stepped-channels has been designed and demonstrated as a powerful separator with outstanding specific capacity (1365.0 mAh g-1 ) and cycling performance (0.03 % fading per cycle from 100th to 700th cycle), which is superior to single/double-layer and commercial separators. The findings may expedite the development of MOF-based membranes and extend the scope of MOFs in energy-storage technologies.

7.
Dalton Trans ; 47(5): 1383-1387, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29292431

RESUMEN

A luminescent MOF with rectangular channels was synthesized and characterized. It is capable of showing a high proton conductivity up to 0.95 × 10-2 S cm-1 at 60 °C and 97% RH, and sensing metal ions (particularly Cr3+ ions), through fluorescence quenching in presence of mixed metal ions.

8.
Dalton Trans ; 45(12): 4989-92, 2016 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-26934989

RESUMEN

Assembly of cucurbit[6] and a {Cd2Ge8V12O48} cluster produced two rotaxane-shaped and polyrotaxane-shaped solids by changing the ratio of starting precursors in the system. The high oxygen density of the polyoxoanion surface provides active sites to extend a single rotaxane-shaped hybrid 1 to a 1D polyrotaxane-shaped hybrid 2. This construction strategy may afford an entirely new methodology for polyoxometalate-based hybrid chemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...