Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 38(19): 6217-6223, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35512026

RESUMEN

In recent years, the application of low-refractive-index materials in the optical field has attracted considerable attention due to it high transmittance and high optical sensitivity. In this study, we synthesized SiO2 porous hollow spheres (SPHS) with an ultralow refractive index (n = 1.05) by using a templating method. Their refractive indices could be easily controlled from 1.05 to 1.08 by tuning the thickness of shell. In addition, a droplet coatings method is proposed for SPHS colloidal crystal (CC) by controlling the temperature and humidity. The SPHS CCs displayed distinct structural colors when the incident angle was adjusted and demonstrated high angular resolution. Moreover, the iridescent color changes could be observed with the naked eye. For surface-enhanced Raman scattering application, more analyte could be absorbed by the porous shells, and metal nanoparticles were coated on the SPHSs surface to increase the hot spot density for improving the SERS intensity.

2.
ACS Omega ; 5(18): 10626-10632, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32426621

RESUMEN

In this study, an economic, sustainable, and green synthesis method of multiporous carbons from agricultural waste, water caltrop shell (denoted as WCS), was presented. To prepare the WCS biochar, the dried WCS was first carbonized to a microporous carbon with a surface area of around 230 m2 g-1 by using a top-lit-updraft method. Then, the microporous WCS biochar was directly mixed with an appropriate amount of ZnO nanoparticles and KOH as activating agents via a solvent-free physical blending route. After further activation at 900 °C, the resulted carbons possess both micropores and mesopores that were named as WCS multiporous carbons. The carbon yield of the prepared WCS multiporous carbons with high surface area in the range of 1175-1537 m2 g-1 is up to 50%. Furthermore, the micropore/mesopore surface area ratio can be simply tuned by controlling the ZnO content. For supercapacitor applications, the as-prepared WCS multiporous carbon electrodes showed high specific capacitance (128 F g-1 at 5 mV s-1) with a good retention rate at 500 mV s-1 scan rate (>60% compared to the capacitance at 5 mV s-1) and low Ohmic resistance in a 1.0 M LiClO4/PC electrolyte. In addition to the ZnO nanoparticles, CaCO3 nanoparticles with low environmental impact were also used to prepare the WCS multiporous carbons. The assembled supercapacitors also demonstrate high specific capacitance (102 F g-1 at 5 mV s-1) and good retention rate (∼70%).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...