Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Image Process ; 33: 1361-1374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38335088

RESUMEN

While the wisdom of training an image dehazing model on synthetic hazy data can alleviate the difficulty of collecting real-world hazy/clean image pairs, it brings the well-known domain shift problem. From a different yet new perspective, this paper explores contrastive learning with an adversarial training effort to leverage unpaired real-world hazy and clean images, thus alleviating the domain shift problem and enhancing the network's generalization ability in real-world scenarios. We propose an effective unsupervised contrastive learning paradigm for image dehazing, dubbed UCL-Dehaze. Unpaired real-world clean and hazy images are easily captured, and will serve as the important positive and negative samples respectively when training our UCL-Dehaze network. To train the network more effectively, we formulate a new self-contrastive perceptual loss function, which encourages the restored images to approach the positive samples and keep away from the negative samples in the embedding space. Besides the overall network architecture of UCL-Dehaze, adversarial training is utilized to align the distributions between the positive samples and the dehazed images. Compared with recent image dehazing works, UCL-Dehaze does not require paired data during training and utilizes unpaired positive/negative data to better enhance the dehazing performance. We conduct comprehensive experiments to evaluate our UCL-Dehaze and demonstrate its superiority over the state-of-the-arts, even only 1,800 unpaired real-world images are used to train our network. Source code is publicly available at https://github.com/yz-wang/UCL-Dehaze.

2.
IEEE Trans Pattern Anal Mach Intell ; 46(6): 4426-4442, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38241116

RESUMEN

Current point cloud denoising (PCD) models optimize single networks, trying to make their parameters adaptive to each point in a large pool of point clouds. Such a denoising network paradigm neglects that different points are often corrupted by different levels of noise and they may convey different geometric structures. Thus, the intricacy of both noise and geometry poses side effects including remnant noise, wrongly-smoothed edges, and distorted shape after denoising. We propose PathNet, a path-selective PCD paradigm based on reinforcement learning (RL). Unlike existing efforts, PathNet enables dynamic selection of the most appropriate denoising path for each point, best moving it onto its underlying surface. We have two more contributions besides the proposed framework of path-selective PCD for the first time. First, to leverage geometry expertise and benefit from training data, we propose a noise- and geometry-aware reward function to train the routing agent in RL. Second, the routing agent and the denoising network are trained jointly to avoid under- and over-smoothing. Extensive experiments show promising improvements of PathNet over its competitors, in terms of the effectiveness for removing different levels of noise and preserving multi-scale surface geometries. Furthermore, PathNet generalizes itself more smoothly to real scans than cutting-edge models.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38271159

RESUMEN

The widely deployed ways to capture a set of unorganized points, e.g., merged laser scans, fusion of depth images, and structure-from- x , usually yield a 3-D noisy point cloud. Accurate normal estimation for the noisy point cloud makes a crucial contribution to the success of various applications. However, the existing normal estimation wisdoms strive to meet a conflicting goal of simultaneously performing normal filtering and preserving surface features, which inevitably leads to inaccurate estimation results. We propose a normal estimation neural network (Norest-Net), which regards normal filtering and feature preservation as two separate tasks, so that each one is specialized rather than traded off. For full noise removal, we present a normal filtering network (NF-Net) branch by learning from the noisy height map descriptor (HMD) of each point to the ground-truth (GT) point normal; for surface feature recovery, we construct a normal refinement network (NR-Net) branch by learning from the bilaterally defiltered point normal descriptor (B-DPND) to the GT point normal. Moreover, NR-Net is detachable to be incorporated into the existing normal estimation methods to boost their performances. Norest-Net shows clear improvements over the state of the arts in both feature preservation and noise robustness on synthetic and real-world captured point clouds.

4.
Artículo en Inglés | MEDLINE | ID: mdl-37948146

RESUMEN

There is a prevailing trend towards fusing multi-modal information for 3D object detection (3OD). However, challenges related to computational efficiency, plug-and-play capabilities, and accurate feature alignment have not been adequately addressed in the design of multi-modal fusion networks. In this paper, we present PointSee, a lightweight, flexible, and effective multi-modal fusion solution to facilitate various 3OD networks by semantic feature enhancement of point clouds (e.g., LiDAR or RGB-D data) assembled with scene images. Beyond the existing wisdom of 3OD, PointSee consists of a hidden module (HM) and a seen module (SM): HM decorates point clouds using 2D image information in an offline fusion manner, leading to minimal or even no adaptations of existing 3OD networks; SM further enriches the point clouds by acquiring point-wise representative semantic features, leading to enhanced performance of existing 3OD networks. Besides the new architecture of PointSee, we propose a simple yet efficient training strategy, to ease the potential inaccurate regressions of 2D object detection networks. Extensive experiments on the popular outdoor/indoor benchmarks show quantitative and qualitative improvements of our PointSee over thirty-five state-of-the-art methods.

5.
Artículo en Inglés | MEDLINE | ID: mdl-37903041

RESUMEN

Outliers will inevitably creep into the captured point cloud during 3D scanning, degrading cutting-edge models on various geometric tasks heavily. This paper looks at an intriguing question that whether point cloud completion and segmentation can promote each other to defeat outliers. To answer it, we propose a collaborative completion and segmentation network, termed CS-Net, for partial point clouds with outliers. Unlike most of existing methods, CS-Net does not need any clean (or say outlier-free) point cloud as input or any outlier removal operation. CS-Net is a new learning paradigm that makes completion and segmentation networks work collaboratively. With a cascaded architecture, our method refines the prediction progressively. Specifically, after the segmentation network, a cleaner point cloud is fed into the completion network. We design a novel completion network which harnesses the labels obtained by segmentation together with farthest point sampling to purify the point cloud and leverages KNN-grouping for better generation. Benefited from segmentation, the completion module can utilize the filtered point cloud which is cleaner for completion. Meanwhile, the segmentation module is able to distinguish outliers from target objects more accurately with the help of the clean and complete shape inferred by completion. Besides the designed collaborative mechanism of CS-Net, we establish a benchmark dataset of partial point clouds with outliers. Extensive experiments show clear improvements of our CS-Net over its competitors, in terms of outlier robustness and completion accuracy.

6.
IEEE Trans Pattern Anal Mach Intell ; 45(8): 9374-9392, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37022019

RESUMEN

Convolution on 3D point clouds is widely researched yet far from perfect in geometric deep learning. The traditional wisdom of convolution characterises feature correspondences indistinguishably among 3D points, arising an intrinsic limitation of poor distinctive feature learning. In this article, we propose Adaptive Graph Convolution (AGConv) for wide applications of point cloud analysis. AGConv generates adaptive kernels for points according to their dynamically learned features. Compared with the solution of using fixed/isotropic kernels, AGConv improves the flexibility of point cloud convolutions, effectively and precisely capturing the diverse relations between points from different semantic parts. Unlike the popular attentional weight schemes, AGConv implements the adaptiveness inside the convolution operation instead of simply assigning different weights to the neighboring points. Extensive evaluations clearly show that our method outperforms state-of-the-arts of point cloud classification and segmentation on various benchmark datasets. Meanwhile, AGConv can flexibly serve more point cloud analysis approaches to boost their performance. To validate its flexibility and effectiveness, we explore AGConv-based paradigms of completion, denoising, upsampling, registration and circle extraction, which are comparable or even superior to their competitors.


Asunto(s)
Algoritmos , Benchmarking
7.
Artículo en Inglés | MEDLINE | ID: mdl-37018698

RESUMEN

How will you repair a physical object with some missings? You may imagine its original shape from previously captured images, recover its overall (global) but coarse shape first, and then refine its local details. We are motivated to imitate the physical repair procedure to address point cloud completion. To this end, we propose a cross-modal shape-transfer dual-refinement network (termed CSDN), a coarse-to-fine paradigm with images of full-cycle participation, for quality point cloud completion. CSDN mainly consists of "shape fusion" and "dual-refinement" modules to tackle the cross-modal challenge. The first module transfers the intrinsic shape characteristics from single images to guide the geometry generation of the missing regions of point clouds, in which we propose IPAdaIN to embed the global features of both the image and the partial point cloud into completion. The second module refines the coarse output by adjusting the positions of the generated points, where the local refinement unit exploits the geometric relation between the novel and the input points by graph convolution, and the global constraint unit utilizes the input image to fine-tune the generated offset. Different from most existing approaches, CSDN not only explores the complementary information from images but also effectively exploits cross-modal data in the whole coarse-to-fine completion procedure. Experimental results indicate that CSDN performs favorably against twelve competitors on the cross-modal benchmark.

8.
IEEE Trans Vis Comput Graph ; 29(2): 1357-1370, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34546923

RESUMEN

We propose a geometry-supporting dual convolutional neural network (GeoDualCNN) for both point cloud normal estimation and denoising. GeoDualCNN fuses the geometry domain knowledge that the underlying surface of a noisy point cloud is piecewisely smooth with the fact that a point normal is properly defined only when local surface smoothness is guaranteed. Centered around this insight, we define the homogeneous neighborhood (HoNe) which stays clear of surface discontinuities, and associate each HoNe with a point whose geometry and normal orientation is mostly consistent with that of HoNe. Thus, we not only obtain initial estimates of the point normals by performing PCA on HoNes, but also for the first time optimize these initial point normals by learning the mapping from two proposed geometric descriptors to the ground-truth point normals. GeoDualCNN consists of two parallel branches that remove noise using the first geometric descriptor (a homogeneous height map, which encodes the point-position information), while preserving surface features using the second geometric descriptor (a homogeneous normal map, which encodes the point-normal information). Such geometry-supporting network architectures enable our model to leverage previous geometry expertise and to benefit from training data. Experiments with noisy point clouds show that GeoDualCNN outperforms the state-of-the-art methods in terms of both noise-robustness and feature preservation.

9.
IEEE Trans Pattern Anal Mach Intell ; 45(1): 946-963, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35077361

RESUMEN

Point normal, as an intrinsic geometric property of 3D objects, not only serves conventional geometric tasks such as surface consolidation and reconstruction, but also facilitates cutting-edge learning-based techniques for shape analysis and generation. In this paper, we propose a normal refinement network, called Refine-Net, to predict accurate normals for noisy point clouds. Traditional normal estimation wisdom heavily depends on priors such as surface shapes or noise distributions, while learning-based solutions settle for single types of hand-crafted features. Differently, our network is designed to refine the initial normal of each point by extracting additional information from multiple feature representations. To this end, several feature modules are developed and incorporated into Refine-Net by a novel connection module. Besides the overall network architecture of Refine-Net, we propose a new multi-scale fitting patch selection scheme for the initial normal estimation, by absorbing geometry domain knowledge. Also, Refine-Net is a generic normal estimation framework: 1) point normals obtained from other methods can be further refined, and 2) any feature module related to the surface geometric structures can be potentially integrated into the framework. Qualitative and quantitative evaluations demonstrate the clear superiority of Refine-Net over the state-of-the-arts on both synthetic and real-scanned datasets.

10.
IEEE Trans Image Process ; 31: 6396-6411, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36256691

RESUMEN

Camouflaged objects share very similar colors but have different semantics with the surroundings. Cognitive scientists observe that both the global contour (i.e., boundary) and the local pattern (i.e., texture) of camouflaged objects are key cues to help humans find them successfully. Inspired by the cognitive scientist's observation, we propose a novel boundary-and-texture enhancement network (FindNet) for camouflaged object detection (COD) from single images. Different from most of existing COD methods, FindNet embeds both the boundary-and-texture information into the camouflaged object features. The boundary enhancement (BE) module is leveraged to focus on the global contour of the camouflaged object, and the texture enhancement (TE) module is utilized to focus on the local pattern. The enhanced features from BE and TE, which complement each other, are combined to obtain the final prediction. FindNet performs competently on various conditions of COD, including slightly clear boundaries but very similar textures, fuzzy boundaries but slightly differentiated textures, and simultaneous fuzzy boundaries and textures. Experimental results exhibit clear improvements of FindNet over fifteen state-of-the-art methods on four benchmark datasets, in terms of detection accuracy and boundary clearness. The code will be publicly released.


Asunto(s)
Percepción de Forma , Humanos
11.
IEEE Trans Neural Netw Learn Syst ; 33(12): 7223-7236, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34111004

RESUMEN

Image smoothing is a prerequisite for many computer vision and graphics applications. In this article, we raise an intriguing question whether a dataset that semantically describes meaningful structures and unimportant details can facilitate a deep learning model to smooth complex natural images. To answer it, we generate ground-truth labels from easy samples by candidate generation and a screening test and synthesize hard samples in structure-preserving smoothing by blending intricate and multifarious details with the labels. To take full advantage of this dataset, we present a joint edge detection and structure-preserving image smoothing neural network (JESS-Net). Moreover, we propose the distinctive total variation loss as prior knowledge to narrow the gap between synthetic and real data. Experiments on different datasets and real images show clear improvements of our method over the state of the arts in terms of both the image cleanness and structure-preserving ability. Code and dataset are available at https://github.com/YidFeng/Easy2Hard.

12.
Biomed Res Int ; 2021: 6622253, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33860043

RESUMEN

Vessel segmentation is a fundamental, yet not well-solved problem in medical image analysis, due to the complicated geometrical and topological structures of human vessels. Unlike existing rule- and conventional learning-based techniques, which hardly capture the location of tiny vessel structures and perceive their global spatial structures, we propose Simultaneous Self- and Channel-attention Neural Network (termed SSCA-Net) to solve the multiscale structure-preserving vessel segmentation (MSVS) problem. SSCA-Net differs from the conventional neural networks in modeling image global contexts, showing more power to understand the global semantic information by both self- and channel-attention (SCA) mechanism and offering high performance on segmenting vessels with multiscale structures (e.g., DSC: 96.21% and MIoU: 92.70% on the intracranial vessel dataset). Specifically, the SCA module is designed and embedded in the feature decoding stage to learn SCA features at different layers, in which the self-attention is used to obtain the position information of the feature itself, and the channel attention is designed to guide the shallow features to obtain global feature information. To evaluate the effectiveness of our SSCA-Net, we compare it with several state-of-the-art methods on three well-known vessel segmentation benchmark datasets. Qualitative and quantitative results demonstrate clear improvements of our method over the state-of-the-art in terms of preserving vessel details and global spatial structures.


Asunto(s)
Algoritmos , Vasos Sanguíneos/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Arterias/diagnóstico por imagen , Bases de Datos como Asunto , Aprendizaje Profundo , Humanos , Pierna/irrigación sanguínea
13.
IEEE Trans Vis Comput Graph ; 27(12): 4469-4482, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32746270

RESUMEN

There is typically a trade-off between removing the detailed appearance (i.e., geometric textures) and preserving the intrinsic properties (i.e., geometric structures) of 3D surfaces. The conventional use of mesh vertex/facet-centered patches in many filters leads to side-effects including remnant textures, improperly filtered structures, and distorted shapes. We propose a selective guidance normal filter (SGNF) which adapts the Relative Total Variation (RTV) to a maximal/minimal scheme (mmRTV). The mmRTV measures the geometric flatness of surface patches, which helps in finding adaptive patches whose boundaries are aligned with the facet being processed. The adaptive patches provide selective guidance normals, which are subsequently used for normal filtering. The filtering smooths out the geometric textures by using guidance normals estimated from patches with maximal RTV (the least flatness), and preserves the geometric structures by using normals estimated from patches with minimal RTV (the most flatness). This simple yet effective modification of the RTV makes our SGNF specialized rather than trade off between texture removal and structure preservation, which is distinct from existing mesh filters. Experiments show that our approach is visually and numerically comparable to the state-of-the-art mesh filters, in most cases. In addition, the mmRTV is generally applicable to bas-relief modeling and image texture removal.

14.
J Healthc Eng ; 2020: 2398542, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32089812

RESUMEN

Facial paralysis (FP) is a loss of facial movement due to nerve damage. Most existing diagnosis systems of FP are subjective, e.g., the House-Brackmann (HB) grading system, which highly depends on the skilled clinicians and lacks an automatic quantitative assessment. In this paper, we propose an efficient yet objective facial paralysis assessment approach via automatic computational image analysis. First, the facial blood flow of FP patients is measured by the technique of laser speckle contrast imaging to generate both RGB color images and blood flow images. Second, with an improved segmentation approach, the patient's face is divided into concerned regions to extract facial blood flow distribution characteristics. Finally, three HB score classifiers are employed to quantify the severity of FP patients. The proposed method has been validated on 80 FP patients, and quantitative results demonstrate that our method, achieving an accuracy of 97.14%, outperforms the state-of-the-art systems. Experimental evaluations also show that the proposed approach could yield objective and quantitative FP diagnosis results, which agree with those obtained by an experienced clinician.


Asunto(s)
Parálisis Facial/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Cara/irrigación sanguínea , Cara/inervación , Parálisis Facial/fisiopatología , Humanos
15.
IEEE Trans Vis Comput Graph ; 26(11): 3255-3270, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31180892

RESUMEN

Point cloud is the primary source from 3D scanners and depth cameras. It usually contains more raw geometric features, as well as higher levels of noise than the reconstructed mesh. Although many mesh denoising methods have proven to be effective in noise removal, they hardly work well on noisy point clouds. We propose a new multi-patch collaborative method for point cloud denoising, which is solved as a low-rank matrix recovery problem. Unlike the traditional single-patch based denoising approaches, our approach is inspired by the geometric statistics which indicate that a number of surface patches sharing approximate geometric properties always exist within a 3D model. Based on this observation, we define a rotation-invariant height-map patch (HMP) for each point by robust Bi-PCA encoding bilaterally filtered normal information, and group its non-local similar patches together. Within each group, all patches are geometrically similar, while suffering from noise. We pack the height maps of each group into an HMP matrix, whose initial rank is high, but can be significantly reduced. We design an improved low-rank recovery model, by imposing a graph constraint to filter noise. Experiments on synthetic and raw datasets demonstrate that our method outperforms state-of-the-art methods in both noise removal and feature preservation.

16.
IEEE Trans Vis Comput Graph ; 25(4): 1651-1665, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29993779

RESUMEN

Bas-relief is characterized by its unique presentation of intrinsic shape properties and/or detailed appearance using materials raised up in different degrees above a background. However, many bas-relief modeling methods could not manipulate scene details well. We propose a simple and effective solution for two kinds of bas-relief modeling (i.e., structure-preserving and detail-preserving) which is different from the prior tone mapping alike methods. Our idea originates from an observation on typical 3D models, which are decomposed into a piecewise smooth base layer and a detail layer in normal field. Proper manipulation of the two layers contributes to both structure-preserving and detail-preserving bas-relief modeling. We solve the modeling problem in a discrete geometry processing setup that uses normal-based mesh processing as a theoretical foundation. Specifically, using the two-step mesh smoothing mechanism as a bridge, we transfer the bas-relief modeling problem into a discrete space, and solve it in a least-squares manner. Experiments and comparisons to other methods show that (i) geometry details are better preserved in the scenario with high compression ratios, and (ii) structures are clearly preserved without shape distortion and interference from details.

17.
IEEE Trans Vis Comput Graph ; 25(10): 2910-2926, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30106734

RESUMEN

Mesh denoising is a classical, yet not well-solved problem in digital geometry processing. The challenge arises from noise removal with the minimal disturbance of surface intrinsic properties (e.g., sharp features and shallow details). We propose a new patch normal co-filter (PcFilter) for mesh denoising. It is inspired by the geometry statistics which show that surface patches with similar intrinsic properties exist on the underlying surface of a noisy mesh. We model the PcFilter as a low-rank matrix recovery problem of similar-patch collaboration, aiming at removing different levels of noise, yet preserving various surface features. We generalize our model to pursue the low-rank matrix recovery in the kernel space for handling the nonlinear structure contained in the data. By making use of the block coordinate descent minimization and the specifics of a proximal based coordinate descent method, we optimize the nonlinear and nonconvex objective function efficiently. The detailed quantitative and qualitative results on synthetic and real data show that the PcFilter competes favorably with the state-of-the-art methods in surface accuracy and noise-robustness.

18.
IEEE Trans Vis Comput Graph ; 21(1): 43-55, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26357020

RESUMEN

Most mesh denoising techniques utilize only either the facet normal field or the vertex normal field of a mesh surface. The two normal fields, though contain some redundant geometry information of the same model, can provide additional information that the other field lacks. Thus, considering only one normal field is likely to overlook some geometric features. In this paper, we take advantage of the piecewise consistent property of the two normal fields and propose an effective framework in which they are filtered and integrated using a novel method to guide the denoising process. Our key observation is that, decomposing the inconsistent field at challenging regions into multiple piecewise consistent fields makes the two fields complementary to each other and produces better results. Our approach consists of three steps: vertex classification, bi-normal filtering, and vertex position update. The classification step allows us to filter the two fields on a piecewise smooth surface rather than a surface that is smooth everywhere. Based on the piecewise consistence of the two normal fields, we filtered them using a piecewise smooth region clustering strategy. To benefit from the bi-normal filtering, we design a quadratic optimization algorithm for vertex position update. Experimental results on synthetic and real data show that our algorithm achieves higher quality results than current approaches on surfaces with multifarious geometric features and irregular surface sampling.

19.
Comput Med Imaging Graph ; 40: 160-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25467803

RESUMEN

Interventional radiology (IR) is widely used in the treatment of cardiovascular disease. The manipulation of the guidewire and catheter is an essential skill in IR procedure. Computer-based training simulators can provide solutions to overcome many drawbacks of the traditional apprenticeship training during the procedure. In this paper, a physically-based approach to simulating the behavior of the guidewire is presented. Our approach models the guidewire as thin flexible elastic rods with different resolutions which are dynamically adaptive to the curvature of the vessel. More material characteristics of this deformable material are integrated into our discrete model to realistically simulate the behavior of the wire. A force correction strategy is proposed to adjust the elastic force to avoid endless collision detections. Several experimental tests on our simulator are given to demonstrate the effectiveness of our approach.


Asunto(s)
Angiografía/métodos , Cateterismo Periférico/métodos , Marcadores Fiduciales , Modelos Cardiovasculares , Radiografía Intervencional/métodos , Dispositivos de Acceso Vascular , Cateterismo Periférico/instrumentación , Simulación por Computador , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Biomed Eng Online ; 9: 75, 2010 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-21087525

RESUMEN

BACKGROUND: The effective geometric modeling of vascular structures is crucial for diagnosis, therapy planning and medical education. These applications require good balance with respect to surface smoothness, surface accuracy, triangle quality and surface size. METHODS: Our method first extracts the vascular boundary voxels from the segmentation result, and utilizes these voxels to build a three-dimensional (3D) point cloud whose normal vectors are estimated via covariance analysis. Then a 3D implicit indicator function is computed from the oriented 3D point cloud by solving a Poisson equation. Finally the vessel surface is generated by a proposed adaptive polygonization algorithm for explicit 3D visualization. RESULTS: Experiments carried out on several typical vascular structures demonstrate that the presented method yields both a smooth morphologically correct and a topologically preserved two-manifold surface, which is scale-adaptive to the local curvature of the surface. Furthermore, the presented method produces fewer and better-shaped triangles with satisfactory surface quality and accuracy. CONCLUSIONS: Compared to other state-of-the-art approaches, our method reaches good balance in terms of smoothness, accuracy, triangle quality and surface size. The vessel surfaces produced by our method are suitable for applications such as computational fluid dynamics simulations and real-time virtual interventional surgery.


Asunto(s)
Vasos Sanguíneos/anatomía & histología , Modelos Anatómicos , Aorta/anatomía & histología , Encéfalo/irrigación sanguínea , Hígado/irrigación sanguínea , Distribución de Poisson , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...