Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Radiat Isot ; 186: 110256, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35533606

RESUMEN

In single-photon emission computed tomography (SPECT), a micro-sized 99mTc source is routinely used for performance measurement, geometry calibration, and system matrix generation. Therefore, a micro-sized source is critical in nuclear instrument production and quality control. Standard methods can only produce a point source with a large size and low total activity, as they are limited by the concentration of the 99mTc solution. The absorption of 99mTc on ion exchange resins has been used; however, few studies have quantitatively evaluated the absorption process and optimized the source activity. This paper proposes a procedure for producing a micro-sized 99mTc resin source with a super-high concentration, as well as a method for the fast measurement of the point source time-activity curve (TAC). Experiments on two resin point sources with diameters of 0.681 mm and 0.326 mm were carried out. Two semi-empirical models, including the first kinetic model and the pseudo-second-order rate equation model, were used to fit TACs. The results show the first kinetic model fit better, which suggests an acquisition time of 2-4 h is needed for optimization. The verification experiment demonstrates a resin point source with a diameter of 0.35 mm and total activity of 10.6 mCi (i.e., 59.1 Ci/mL concentration) was produced.


Asunto(s)
Resinas de Intercambio Iónico , Tomografía Computarizada de Emisión de Fotón Único , Calibración , Tomografía Computarizada de Emisión de Fotón Único/métodos
2.
Sensors (Basel) ; 21(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34640676

RESUMEN

As a global vibration characteristic, natural frequency often suffers from insufficient sensitivity to structural damage, which is associated with local variations of structural material or geometric properties. Such a drawback is particularly significant when dealing with the large scale and complexity of sluice structural systems. To this end, a damage detection method in sluice hoist beams is proposed that relies on the utilization of the local primary frequency (LPF), which is obtained based on the swept frequency excitation (SFE) technique and local resonance response band (LRRB) selection. Using this method, the local mode of the target sluice hoist beam can be effectively excited, while the vibrations of other components in the system are suppressed. As a result, the damage will cause a significant shift in the LPF of the sluice hoist beam at the local mode. A damage index was constructed to quantitatively reflect the damage degree of the sluice hoist beam. The accuracy and reliability of the proposed method were verified on a three-dimensional finite element model of a sluice system, with the noise resistance increased from 0.05 to 0.2 based on the hammer impact method. The proposed method exhibits promising potential for damage detection in complex structural systems.


Asunto(s)
Vibración , Reproducibilidad de los Resultados
3.
IEEE Trans Med Imaging ; 40(8): 2152-2169, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33852384

RESUMEN

Conventional single photon emission computed tomography (SPECT) relies on mechanical collimation whose resolution and sensitivity are interdependent, the best performance a SPECT system can attain is only a compromise of these two equally desired properties. To simultaneously achieve high resolution and sensitivity, we propose to use sensitive detectors constructed in a multi-layer in ter spaced mosaicdetectors (MATRICES) architecture to accomplish part of the collimation needed. We name this new approach self-collimation. We evaluate three self-collimating SPECT systems and report their imaging performance: 1) A simulated human brain SPECT achieves 3.88% sensitivity, it clearly resolves 0.5-mm and 1.0-mm hot-rod patterns at noise-free and realistic count-levels, respectively; 2) a simulated mouse SPECT achieves 1.25% sensitivity, it clearly resolves 50- [Formula: see text] and 100- [Formula: see text] hot-rod patterns at noise-free and realistic count-levels, respectively; 3) a SPECT prototype achieves 0.14% sensitivity and clearly separates 0.3-mm-diameter point sources of which the center-to-center neighbor distance is also 0.3 mm. Simulated contrast phantom studies show excellent resolution and signal-to-noise performance. The unprecedented system performance demonstrated by these 3 SPECT scanners is a clear manifestation of the superiority of the self-collimating approach over conventional mechanical collimation. It represents a potential paradigm shift in SPECT technology development.


Asunto(s)
Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X , Animales , Humanos , Ratones , Fantasmas de Imagen , Radioisótopos
4.
Sensors (Basel) ; 21(2)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435444

RESUMEN

With the rapid development of artificial intelligence and fifth-generation mobile network technologies, automatic instrument reading has become an increasingly important topic for intelligent sensors in smart cities. We propose a full pipeline to automatically read watermeters based on a single image, using deep learning methods to provide new technical support for an intelligent water meter reading. To handle the various challenging environments where watermeters reside, our pipeline disentangled the task into individual subtasks based on the structures of typical watermeters. These subtasks include component localization, orientation alignment, spatial layout guidance reading, and regression-based pointer reading. The devised algorithms for orientation alignment and spatial layout guidance are tailored to improve the robustness of our neural network. We also collect images of watermeters in real scenes and build a dataset for training and evaluation. Experimental results demonstrate the effectiveness of the proposed method even under challenging environments with varying lighting, occlusions, and different orientations. Thanks to the lightweight algorithms adopted in our pipeline, the system can be easily deployed and fully automated.

5.
Phys Med Biol ; 63(2): 02NT01, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29160772

RESUMEN

Modern positron emission tomography (PET) detectors are made from pixelated scintillation crystal arrays and readout by Anger logic. The interaction position of the gamma-ray should be assigned to a crystal using a crystal position map or look-up table. Crystal identification is a critical procedure for pixelated PET systems. In this paper, we propose a novel crystal identification method for a dual-layer-offset LYSO based animal PET system via Lu-176 background radiation and mean shift algorithm. Single photon event data of the Lu-176 background radiation are acquired in list-mode for 3 h to generate a single photon flood map (SPFM). Coincidence events are obtained from the same data using time information to generate a coincidence flood map (CFM). The CFM is used to identify the peaks of the inner layer using the mean shift algorithm. The response of the inner layer is deducted from the SPFM by subtracting CFM. Then, the peaks of the outer layer are also identified using the mean shift algorithm. The automatically identified peaks are manually inspected by a graphical user interface program. Finally, a crystal position map is generated using a distance criterion based on these peaks. The proposed method is verified on the animal PET system with 48 detector blocks on a laptop with an Intel i7-5500U processor. The total runtime for whole system peak identification is 67.9 s. Results show that the automatic crystal identification has 99.98% and 99.09% accuracy for the peaks of the inner and outer layers of the whole system respectively. In conclusion, the proposed method is suitable for the dual-layer-offset lutetium based PET system to perform crystal identification instead of external radiation sources.


Asunto(s)
Algoritmos , Lutecio , Tomografía de Emisión de Positrones/instrumentación , Tomografía de Emisión de Positrones/veterinaria , Radioisótopos , Conteo por Cintilación/instrumentación , Animales , Radiación de Fondo , Tomografía de Emisión de Positrones/métodos , Conteo por Cintilación/métodos
6.
Phys Med Biol ; 61(3): 1041-56, 2016 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-26757857

RESUMEN

The objective of this study was to choose the crystal surface finishing for a dual-ended readout (DER) DOI detector. Through Monte Carlo simulations and experimental studies, we evaluated 4 crystal surface finishing options as combinations of crystal surface polishing (diffuse or specular) and reflector (diffuse or specular) options on a DER detector. We also tested one linear and one logarithm DOI calculation algorithm. The figures of merit used were DOI resolution, DOI positioning error, and energy resolution. Both the simulation and experimental results show that (1) choosing a diffuse type in either surface polishing or reflector would improve DOI resolution but degrade energy resolution; (2) crystal surface finishing with a diffuse polishing combined with a specular reflector appears a favorable candidate with a good balance of DOI and energy resolution; and (3) the linear and logarithm DOI calculation algorithms show overall comparable DOI error, and the linear algorithm was better for photon interactions near the ends of the crystal while the logarithm algorithm was better near the center. These results provide useful guidance in DER DOI detector design in choosing the crystal surface finishing and DOI calculation methods.


Asunto(s)
Algoritmos , Fotones , Tomografía de Emisión de Positrones/instrumentación , Tomografía de Emisión de Positrones/métodos
7.
Med Phys ; 42(11): 6599-609, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26520751

RESUMEN

PURPOSE: The authors developed SPECT imaging capability on an animal PET scanner using a multiple-pinhole collimator and step-and-shoot helical data acquisition protocols. The objective of this work was to determine the preferred helical scan parameters, i.e., the angular and axial step sizes, and the imaging volume, that provide optimal imaging performance. METHODS: The authors studied nine helical scan protocols formed by permuting three rotational and three axial step sizes. These step sizes were chosen around the reference values analytically calculated from the estimated spatial resolution of the SPECT system and the Nyquist sampling theorem. The nine helical protocols were evaluated by two figures-of-merit: the sampling completeness percentage (SCP) and the root-mean-square (RMS) resolution. SCP was an analytically calculated numerical index based on projection sampling. RMS resolution was derived from the reconstructed images of a sphere-grid phantom. RESULTS: The RMS resolution results show that (1) the start and end pinhole planes of the helical scheme determine the axial extent of the effective field of view (EFOV), and (2) the diameter of the transverse EFOV is adequately calculated from the geometry of the pinhole opening, since the peripheral region beyond EFOV would introduce projection multiplexing and consequent effects. The RMS resolution results of the nine helical scan schemes show optimal resolution is achieved when the axial step size is the half, and the angular step size is about twice the corresponding values derived from the Nyquist theorem. The SCP results agree in general with that of RMS resolution but are less critical in assessing the effects of helical parameters and EFOV. CONCLUSIONS: The authors quantitatively validated the effective FOV of multiple pinhole helical scan protocols and proposed a simple method to calculate optimal helical scan parameters.


Asunto(s)
Tomografía Computarizada de Emisión de Fotón Único/instrumentación , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Simulación por Computador , Modelos Teóricos , Fantasmas de Imagen , Rotación , Factores de Tiempo
9.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA