Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(1): 798-808, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38149592

RESUMEN

Electrochemical capacitors have faced the limitations of low energy density for decades, owing to the low capacity of electric double-layer capacitance (EDLC)-type positive electrodes. In this work, we reveal the functions of interlayer confined water in iron vanadate (FeV3O8.7·nH2O) for sodium-ion storage in nonaqueous electrolyte. Using an electrochemical quartz crystal microbalance, in situ Raman, and ex situ X-ray diffraction and X-ray photoelectron spectroscopy, we demonstrate that both nonfaradaic (surficial EDLC) and faradaic (pseudocapacitance-dominated Na+ intercalation) processes are involved in the charge storages. The interlayer confined water is able to accelerate the fast Na+ intercalations and is highly stable (without the removal of water or co-intercalation of [Na-diglyme]+) in the nonaqueous environment. Furthermore, coupling the pseudocapacitive FeV3O8.7·nH2O with EDLC-type activated carbon (FeVO-AC) as the positive electrode brings comprehensive enhancements, displaying the enlarged compaction density of ∼2 times, specific capacity of ∼1.5 times, and volumetric capacity of ∼3 times compared to the AC electrode. Furthermore, the as-assembled hybrid sodium-ion capacitor, consisting of an FeVO-AC positive electrode and a mesocarbon microbeads negative electrode, shows a high energy density of 108 Wh kg-1 at 108 W kg-1 and 15.3 Wh kg-1 at 8.3 kW kg-1. Our results offer an emerging route for improving both specific and volumetric energy densities of electrochemical capacitors.

2.
JACS Au ; 3(4): 1141-1150, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37124304

RESUMEN

Mesoporous materials with crystalline frameworks have been acknowledged as very attractive materials in various applications. Nevertheless, due to the cracking issue during crystallization and incompatible hydrolysis and assembly, the precise control for crystalline mesoscale membranes is quite infertile. Herein, we presented an ingenious stepwise monomicelle assembly route for the syntheses of highly ordered mesoporous crystalline TiO2 membranes with delicately controlled mesophase, mesoporosity, and thickness. Such a process involves the preparation of monomicelle hydrogels and follows self-assembly by stepwise solvent evaporation, which enables the sensitive hydrolysis of TiO2 oligomers and dilatory micelle assembly to be united. In consequence, the fabricated mesoporous TiO2 membranes exhibit a broad flexibility, including tunable ordered mesophases (worm-like, hexagonal p6mm to body-centered cubic Im3̅m), controlled mesopore sizes (3.0-8.0 nm), and anatase grain sizes (2.3-8.4 nm). Besides, such mesostructured crystalline TiO2 membranes can be extended to diverse substrates (Ti, Ag, Si, FTO) with tailored thickness. The great mesoporosity of the in situ fabricated mesoscopic membranes also affords excellent pseudocapacitive behavior for sodium ion storage. This study underscores a novel pathway for balancing the interaction of precursors and micelles, which could have implications for synthesizing crystalline mesostructures in higher controllability.

3.
J Chem Phys ; 158(17)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37144711

RESUMEN

Transition metal oxide (TMO) anodes show inferior sodium ion storage performance compared with that of lithium ion storage owing to the larger radium size and heavier elemental mass of Na+ than Li+. Effective strategies are highly desired to improve the Na+ storage performance of TMOs for applications. In this work, using ZnFe2O4@xC nanocomposites as model materials for investigation, we found that by manipulating the particle sizes of the inner TMOs core and the features of outer carbon coating, the Na+ storage performance can be significantly improved. The ZnFe2O4@1C with a diameter of the inner ZnFe2O4 core of around 200 nm coated by a thin carbon layer of around 3 nm shows a specific capacity of only 120 mA h g-1. The ZnFe2O4@6.5C with a diameter of the inner ZnFe2O4 core of around 110 nm embedding in a porous interconnected carbon matrix displays a significantly improved specific capacity of 420 mA h g-1 at the same specific current. Furthermore, the latter shows an excellent cycling stability of 1000 cycles with a capacity retention of 90% of the initial 220 mA h g-1 specific capacity at 1.0 A g-1. TEM, electrochemical impedance spectroscopy, and kinetic analysis show that the inner ZnFe2O4 core with reduced particle size and the outer thicker and interconnected carbon matrix synergistically improve the active reaction sites, integrity, electric conductivity, and pseudocapacitive-controlled contribution of ZnFe2O4@xC nanocomposites, thus leading to an overall enhanced Na+ storage performance. Our findings create a universal, facile, and effective method to enhance the Na+ storage performance of the TMO@C nanomaterials.

4.
Small ; 19(32): e2301141, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37069768

RESUMEN

Sodium-ion batteries (SIBs) are promising alternatives for large-scale energy storage owing to the rich resource and cost effectiveness. However, there are limitations of suitable low-cost, high-rate cathode materials for fast charging and high-power delivery in grid systems. Herein, a biphasic tunnel/layered 0.80Na0.44 MnO2 /0.20Na0.70 MnO2 (80T/20L) cathode delivering exceptional rate performance through subtly regulating the sodium and manganese stoichiometry is reported. It delivers a reversible capacity of 87 mAh g-1 at 4 A g-1 (33 C), much higher than that of tunnel Na0.44 MnO2 (72 mAh g-1 ) and layered Na0.70 MnO2 (36 mAh g-1 ). It proves that the one-pot synthesized 80T/20L is able to suppress the deactivation of L-Na0.70 MnO2 under air-exposure, which improves the specific capacity and cycling stability. Based on electrochemical kinetics analysis, the electrochemical storage of 80T/20L is mainly based on pseudocapacitive surface-controlled process. The thick film of 80T/20L cathode (a single-side mass loading over 10 mg cm-2 ) also has superior properties of pseudocapacitive response (over 83.5% at a low sweep rate of 1 mV s-1 ) and excellent rate performance. In this sense, the 80T/20L cathode with outstanding comprehensive performance could meet the requirements of high-performance SIBs.

5.
Nat Commun ; 14(1): 7, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596801

RESUMEN

Sodium-ion storage technologies are promising candidates for large-scale grid systems due to the abundance and low cost of sodium. However, compared to well-understood lithium-ion storage mechanisms, sodium-ion storage remains relatively unexplored. Herein, we systematically determine the sodium-ion storage properties of anatase titanium dioxide (TiO2(A)). During the initial sodiation process, a thin surface layer (~3 to 5 nm) of crystalline TiO2(A) becomes amorphous but still undergoes Ti4+/Ti3+ redox reactions. A model explaining the role of the amorphous layer and the dependence of the specific capacity on the size of TiO2(A) nanoparticles is proposed. Amorphous nanoparticles of ~10 nm seem to be optimum in terms of achieving high specific capacity, on the order of 200 mAh g-1, at high charge/discharge rates. Kinetic studies of TiO2(A) nanoparticles indicate that sodium-ion storage is due to a surface-redox mechanism that is not dependent on nanoparticle size in contrast to the lithiation of TiO2(A) which is a diffusion-limited intercalation process. The surface-redox properties of TiO2(A) result in excellent rate capability, cycling stability and low overpotentials. Moreover, tailoring the surface-redox mechanism enables thick electrodes of TiO2(A) to retain high rate properties, and represents a promising direction for high-power sodium-ion storage.

6.
Small ; 18(24): e2200805, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35585667

RESUMEN

Electrochemical sodium-ion storage technologies have become an indispensable part in the field of large-scale energy storage systems owing to the widespread and low-cost sodium resources. Molybdenum carbides with high electron conductivity are regarded as potential sodium storage anode materials, but the comprehensive sodium storage mechanism has not been studied in depth. Herein, Mo2 C nanowires (MC-NWs) in which Mo2 C nanoparticles are embedded in carbon substrate are synthesized. The sodium-ion storage mechanism is further systematically studied by in/ex situ experimental characterizations and diffusion kinetics analysis. Briefly, it is discovered that a faradaic redox reaction occurs in the surface amorphous molybdenum oxides on Mo2 C nanoparticles, while the inner Mo2 C is unreactive. Thus, the as-synthesized MC-NWs with surface pseudocapacitance display excellent rate capability (a high specific capacity of 76.5 mAh g-1 at 20 A g-1 ) and long cycling stability (a high specific capacity of 331.2 mAh g-1 at 1 A g-1 over 1500 cycles). The assembled original sodium ion capacitor displays remarkable power density and energy density. This work provides a comprehensive understanding of the sodium storage mechanism of Mo2 C materials, and constructing pseudocapacitive materials is an effective way to achieve sodium-ion storage devices with high power and energy density.

7.
Adv Sci (Weinh) ; 9(17): e2200523, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35475326

RESUMEN

The large overpotential and poor cycle stability caused by inactive redox reactions are tough challenges for lithium-oxygen batteries (LOBs). Here, a composite microsphere material comprising NiCo2 O4 @CeO2 is synthesized via a hydrothermal approach followed by an annealing processing, which is acted as a high performance electrocatalyst for LOBs. The unique microstructured catalyst can provide enough catalytic surface to facilitate the barrier-free transport of oxygen as well as lithium ions. In addition, the special microsphere and porous nanoneedles structure can effectively accelerate electrolyte penetration and the reversible formation and decomposition process of Li2 O2 , while the introduction of CeO2 can increase oxygen vacancies and optimize the electronic structure of NiCo2 O4 , thereby enhancing the electron transport of the whole electrode. This kind of catalytic cathode material can effectively reduce the overpotential to only 1.07 V with remarkable cycling stability of 400 loops under 500 mA g-1 . Based on the density functional theory calculations, the origin of the enhanced electrochemical performance of NiCo2 O4 @CeO2 is clarified from the perspective of electronic structure and reaction kinetics. This work demonstrates the high efficiency of NiCo2 O4 @CeO2 as an electrocatalyst and confirms the contribution of the current design concept to the development of LOBs cathode materials.

8.
Adv Sci (Weinh) ; 9(12): e2106004, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35233996

RESUMEN

Lithium-sulfur (Li-S) batteries are regarded as the most promising next-generation energy storage systems due to their high energy density and cost-effectiveness. However, their practical applications are seriously hindered by several inevitable drawbacks, especially the shuttle effects of soluble lithium polysulfides (LiPSs) which lead to rapid capacity decay and short cycling lifespan. This review specifically concentrates on the shuttle path of LiPSs and their interaction with the corresponding cell components along the moving way, systematically retrospect the recent advances and strategies toward polysulfides diffusion suppression. Overall, the strategies for the shuttle effect inhibition can be classified into four parts, including capturing the LiPSs in the sulfur cathode, reducing the dissolution in electrolytes, blocking the shuttle channels by functional separators, and preventing the chemical reaction between LiPSs and Li metal anode. Herein, the fundamental aspect of Li-S batteries is introduced first to give an in-deep understanding of the generation and shuttle effect of LiPSs. Then, the corresponding strategies toward LiPSs shuttle inhibition along the diffusion path are discussed step by step. Finally, general conclusions and perspectives for future research on shuttle issues and practical application of Li-S batteries are proposed.

9.
Angew Chem Int Ed Engl ; 61(25): e202200777, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35194915

RESUMEN

Mesoscale TiO2 structures have realized many technological applications-ranging from catalysis and biomedicine to energy storage and conversion-because of their large mesoporosities offering desirable accessibility and mass transport. Tailoring mesoporous TiO2 structures with novel mesoscopic and microscopic configurations is envisaged to offer ample opportunities for further applications. In this Review, we explain how to synthesize novel mesoporous TiO2 materials and present recent examples. An emphasis is placed on a "monomicelle assembly" strategy as an emerging and powerful approach to direct the formation of mesostructured TiO2 with precise control over its structural orientations and architectures. Furthermore, typical examples of mesoporous TiO2 for applications in batteries and photocatalysis are highlighted. The Review ends with an outlook towards the synthesis of mesoporous TiO2 with tailored architectures by self-assembly, which could pave the way for developing advanced energy conversion and storage devices.

10.
Adv Mater ; 34(6): e2108304, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34816491

RESUMEN

Sodium-ion batteries (SIBs) show practical applications in large-scale energy storage systems. But, their power density is limited by the sluggish Na+ diffusion into the cathode and anode materials. Herein, the authors demonstrate a prototype of ultrahigh power SIB, consisting of the high-rate Na3 V2 (PO4 )3 (NVP) cathode, graphite-type mesocarbon microbeads (MCMB) anode, and Na+ -diglyme electrolyte. It is found that the overpotential of the NVP cathode obeys the Ohmic rule. Thus, the as-synthesized NVP@C@carbon nanotubes (CNTs) cathode with the high conductive CNTs networks displays high electronic conductivity, reducing the overpotential and charge transfer resistances and leading to the remarkable rate capability over 1000C. For the MCMB anode, the initial [Na-diglyme]+ co-intercalation step is pseudocapacitive dominated, and then the expanded graphite's layers ensure the subsequent fast ions diffusion. The rapid (de)intercalation kinetics in between the cathode and anode are well-matched. Thus, the assembled MCMB|1 m NaPF6 in diglyme|NVP@C@CNTs full-cell SIB delivers the energy density of 88 Wh kg-1 at the high power density of ≈10 kW kg-1 . Even at the ultrahigh power density of 23 kW kg-1 , an energy density of 58 Wh kg-1 is obtained. The encouraging results of the full cell will promote the development of high-power SIB for large-scale applications in the future.

11.
Nanomaterials (Basel) ; 11(12)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34947742

RESUMEN

Lithium cobalt oxide (LCO) is the most widely used cathode materials in electronic devices due to the high working potential and dense tap density, but the performance is limited by the unstable interfaces at high potential. Herein, LiF thin film is sputtered on the surface of LCO electrodes for enhancing the electrochemical performance and reducing the voltage polarization. The polarization components are discussed and quantified by analyzing the relationship between electrochemical polarization and charger transfer resistance, as well as that between concentration polarization and Li-ion diffusion coefficients. In addition, the decreased charge transfer resistance, increased lithium-ion diffusion coefficients, and stabilized crystal structure of LiF-coated LCO are confirmed by various electrochemical tests and in-situ XRD experiments. Compared to that of pristine LCO, the capacity and cycling performance of LiF-coated LCO is improved, and the overpotential is reduced upon cycling. This work provides reference for quantifying the various polarization components, and the strategy of coating LiF film could be applied in developing other analogous cathode materials.

12.
Adv Mater ; 33(49): e2103736, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34651351

RESUMEN

Among the various VO2 polymorphs, the layered compound, VO2 (B), has been the most widely investigated lithium-ion battery electrode material. For sodium-ion electrodes, however, an amorphous solid may be more advantageous as a result of the open framework to facilitate ion insertion and the ability to tolerate volumetric changes. Herein, it is shown that the Na+ insertion properties of amorphous VO2 (a-VO2 ) are superior to those of crystalline VO2 (B). Amorphous VO2 exhibits a linear voltage characteristic over a 3 V range (4.0 to 1.0 V vs Na/Na+ ) leading to a reversible capacity as high as 400 mAh g-1 and rapid redox kinetics, which is attributed to its pseudocapacitive nature. The linear voltage characteristic over 3 V affords the opportunity of fabricating a symmetric Na-ion battery in which the a-VO2 material serves as both the positive electrode and the negative electrode. Such a symmetric battery offers safer operation in terms of overcharging, overdischarging, polarity reversal, high charge/discharge current abuse, and long-term usage. The results suggest that amorphous transition metal oxides may offer advantageous attributes for rapid, safe, and energy-dense storage.

13.
J Am Chem Soc ; 143(35): 14097-14105, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34379403

RESUMEN

Surface redox pseudocapacitance, which enables short charging times and high power delivery, is very attractive in a wide range of sites. To achieve maximized specific capacity, nanostructuring of active materials with high surface area is indispensable. However, one key limitation for capacitive materials is their low volumetric capacity due to the low tap density of nanomaterials. Here, we present a promising mesoscale TiO2 structure with precisely controlled mesoporous frameworks as a high-density pseudocapacitive model system. The dense-packed mesoscopic TiO2 in micrometer size offers a high accessible surface area (124 m2 g-1) and radially aligned mesopore channels, but high tap density (1.7 g cm-3) that is much higher than TiO2 nanoparticles (0.47 g cm-3). As a pseudocapacitive sodium-ion storage anode, the precisely designed mesoscopic TiO2 model achieved maximized gravimetric capacity (240 mAh g-1) and volumetric capacity (350 mAh cm-3) at 0.025 A g-1. Such a designed pseudocapacitive mesostructure further realized a commercially comparable areal capacity (2.1 mAh cm-2) at a high mass loading of 9.47 mg cm-2. This mesostructured electrode that enables fast sodiation in dense nanostructures has implications for high-power applications, fast-charging devices, and pseudocapacitive electrode design.

14.
Nanomicro Lett ; 13(1): 55, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-34138220

RESUMEN

High-performance and low-cost sodium-ion capacitors (SICs) show tremendous potential applications in public transport and grid energy storage. However, conventional SICs are limited by the low specific capacity, poor rate capability, and low initial coulombic efficiency (ICE) of anode materials. Herein, we report layered iron vanadate (Fe5V15O39 (OH)9·9H2O) ultrathin nanosheets with a thickness of ~ 2.2 nm (FeVO UNSs) as a novel anode for rapid and reversible sodium-ion storage. According to in situ synchrotron X-ray diffractions and electrochemical analysis, the storage mechanism of FeVO UNSs anode is Na+ intercalation pseudocapacitance under a safe potential window. The FeVO UNSs anode delivers high ICE (93.86%), high reversible capacity (292 mAh g-1), excellent cycling stability, and remarkable rate capability. Furthermore, a pseudocapacitor-battery hybrid SIC (PBH-SIC) consisting of pseudocapacitor-type FeVO UNSs anode and battery-type Na3(VO)2(PO4)2F cathode is assembled with the elimination of presodiation treatments. The PBH-SIC involves faradaic reaction on both cathode and anode materials, delivering a high energy density of 126 Wh kg-1 at 91 W kg-1, a high power density of 7.6 kW kg-1 with an energy density of 43 Wh kg-1, and 9000 stable cycles. The tunable vanadate materials with high-performance Na+ intercalation pseudocapacitance provide a direction for developing next-generation high-energy capacitors.

15.
Adv Mater ; 33(26): e2100359, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33998711

RESUMEN

Aqueous zinc-ion batteries are highly desirable for large-scale energy storage because of their low cost and high-level safety. However, achieving high energy and high power densities simultaneously is challenging. Herein, a VOx sub-nanometer cluster/reduced graphene oxide (rGO) cathode material composed of interfacial VOC bonds is artificially constructed. Therein, a new mechanism is revealed, where Zn2+ ions are predominantly stored at the interface between VOx and rGO, which causes anomalous valence changes compared to conventional mechanisms and exploits the storage ability of non-energy-storing active yet highly conductive rGO. Further, this interface-dominated storage triggers decoupled transport of electrons/Zn2+ ions, and the reversible destruction/reconstruction allows the interface to store more ions than the bulk. Finally, an ultrahigh rate capability (174.4 mAh g-1 at 100 A g-1 , i.e., capacity retention of 39.4% for a 1000-fold increase in current density) and a high capacity (443 mAh g-1 at 100 mA g-1 , exceeding the theoretical capacities of each interfacial component) are achieved. Such interface-dominated storage is an exciting way to build high-energy- and high-power-density devices.

16.
Angew Chem Int Ed Engl ; 59(40): 17676-17683, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32632999

RESUMEN

By introducing a compatible reducing agent (2-ethylimidazole) into a mono-micelle assembly process, we present a type of ordered mesoporous TiO2 microspheres that combines radially aligned mesostructure with Ti3+ defects in mesoporous frameworks. Such reductant acts as a building block of mesostructured frameworks and reduces Ti4+ in situ to generate defects during calcination, giving rise to the coexistence of bulk Ti3+ defects and an ordered mesostructure. The mesoporous TiO2 has both excellent mesoporosity (a high surface area of 106 m2 g-1 , a mean pore size of 18.4 nm) and stable defects with an extended photoresponse. Such integration of unique mesoscopic architecture and atomic vacancies provide both effective mass transportation and enhanced light utilization, leading to a remarkable increase in H2 generation rate. A maximum H2 evolution rate of 19.8 mmol g-1 h-1 can be achieved, along with outstanding stability under solar light.

17.
J Am Chem Soc ; 141(42): 16755-16762, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31564098

RESUMEN

Two-dimensional (2D) heterostructures endowed with mesoporosities offer exciting opportunities in electrocatalysis, photocatalysis, energy storage, and conversion technologies due to their integrated functionalities, abundant active sites and shortened diffusion distance. However, layered mesostructures have not been combined due to the immense difficulties by conventional chemical, mechanical exfoliation or self-assembly approaches. Herein, we explore a bottom-up strategy, carried out under mild conditions, for the facile synthesis of monolayered mesoporous-titania-mesoporous-carbon vertical heterostructure with uniform mesopore size, which enables ultrahigh rate capability and cycling longevity for pseudocapacitive sodium-ion storage in nonaqueous electrolyte. Such a brand-new type of heterostructure consists of well-ordered monolayered mesoporous titania nanosheets and surrounding two mesoporous carbon monolayers assembled at both sides. Remarkably, the combination of interconnected large mesoporosity and heterointerface leads to highly promoted reversible pseudocapacitance (96.4% of total charge storage at a sweep rate of 1 mV s-1), and it enables the material to retain strong mechanical stability during the rapid sodiation and desodiation processes. This study reveals the importance of incorporating mesopores into heterointerface as a strategy for enhancing charge storage kinetics of electroactive materials.

18.
Chemistry ; 25(64): 14604-14612, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31486559

RESUMEN

Tuning the uniformity and size of binary metal oxide nanodots on graphene oxide (BMO NDs@GO) is significant but full of challenges in wet-chemistry, owing to the difficulties of controlling the complicated cation/anion co-adsorption, heterogeneous nucleation, and overgrowth processes. Herein, the aim is to tune these processes by understanding the functions of various alcohol solvents for NDs growth on GO. It is found that the polyol solvation effect is beneficial for obtaining highly uniform BMO NDs@GO. Polyol shell capped metal ions exhibit stronger hydrogen-bond interactions with the GO surface, leading to a uniform cation/anion co-adsorption and followed heterogeneous nucleation. The polyol-solvated ions with large diffusion energy barrier drastically limit the ion diffusion kinetics in liquids and at the solid/liquid interface, resulting in a slow and controllable growth. Moreover, the synthesis in polyol systems is highly controllable and universal, thus eleven BMO and polynary metal oxide NDs@GO are obtained by this method. The synthetic strategy provides improved prospects for the manufacture of inorganic NDs and their expanding electrochemical applications.

19.
Small ; 15(22): e1900379, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31018042

RESUMEN

Developing pseudocapacitive cathodes for sodium ion capacitors (SICs) is very significant for enhancing energy density of SICs. Vanadium oxides cathodes with pseudocapacitive behavior are able to offer high capacity. However, the capacity fading caused by the irreversible collapse of layer structure remains a major issue. Herein, based on the Acid-Base Proton theory, a strongly coupled layered pyridine-V2 O5 ·nH2 O nanowires cathode is reported for highly efficient sodium ion storage. By density functional theory calculations, in situ X-ray diffraction, and ex situ Fourier-transform infrared spectroscopy, a strong interaction between protonated pyridine and VO group is confirmed and stable during cycling. The pyridine-V2 O5 ·nH2 O nanowires deliver long-term cyclability (over 3000 cycles), large pseudocapacitive behavior (78% capacitive contribution at 1 mV s-1 ) and outstanding rate capability. The assembled pyridine-V2 O5 ·nH2 O//graphitic mesocarbon microbead SIC delivers high energy density of ≈96 Wh kg-1 (at 59 W kg-1 ) and power density of 14 kW kg-1 (at 37.5 Wh kg-1 ). The present work highlights the strategy of realizing strong interaction in the interlayer of V2 O5 ·nH2 O to enhance the electrochemical performance of vanadium oxides cathodes. The strategy could be extended for improving the electrochemical performance of other layered materials.

20.
iScience ; 6: 212-221, 2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-30240611

RESUMEN

Sodium ion capacitors (SICs) are designed to deliver both high energy and power densities at low cost. Electric double-layer capacitive cathodes are typically used in these devices, but they lead to very limited capacity. Herein, we apply a pseudocapacitive layered ferric vanadate (Fe-V-O) as cathode to construct non-aqueous SICs with both high energy and power densities. The Fe-V-O nanosheets cathode displays remarkable rate capability and cycling stability. The pseudocapacitive sodium storage mechanism of Fe-V-O, with over 83% of total capacity from capacitive contribution, is confirmed by kinetics analysis and ex situ characterizations. The capacitive-adsorption mechanism of hard carbon (HC) anode is demonstrated, and it delivers excellent rate capability. Based on as-synthesized materials, the assembled HC//Fe-V-O SIC delivers a maximum energy density of 194 Wh kg-1 and power density of 3,942 W kg-1. Our work highlights the advantages of pseudocapacitive cathodes for achieving both high energy and power densities in sodium storage devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...