Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 13(6): 1636-1640, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35282620

RESUMEN

Well-studied cycloparaphenylenes (CPPs) correspond to the simplest segments of armchair CNTs, whereas the corresponding macrocyclic oligophenylene strip of zigzag CNTs is still missing. Herein, we present two series of conjugated macrocycles (CM2PP and CN2PP) containing two meta-phenylene or 2,7-naphthylene units facing each other in the strip. CM2PP and CN2PP can be regarded as the shortest cyclic primitive segments of zigzag CNTs. They were synthesized by gold-mediated dimerization and unambiguously characterized. They adopted the tubular structures and can further pack into one-dimensional supramolecular nanotubes. In particular, the supramolecular nanotube of CM2P4P mimics the CNT(9, 0) structure. Structural analysis and theoretical calculation accounted for the reduced ring strain in CM2PPs and CN2PPs. CM2PPs and CN2PPs exhibited a large optical extinction coefficient and high photoluminescence quantum yield. CN2P8P can accommodate fullerene C60, forming a Saturn-like C60@CN2P8P complex, a mimic structure of zigzag CNT peapods.

2.
Angew Chem Int Ed Engl ; 61(18): e202116955, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35191583

RESUMEN

Although heptagons are widely found in graphenic materials, the precise synthesis of nanocarbons containing heptagons remains a challenge, especially for the nanocarbons containing multiple-heptagons. Herein, we show that photo-induced radical cyclization (PIRC) can be used to synthesize multi-heptagon-embedded nanocarbons. Notably, a nanographene containing six heptagons (1) was obtained via a six-fold cascade PIRC reaction. The structure of 1 was clearly validated and showed a Monkey-saddle-shaped conformation. Experimental bond analysis and theoretical calculations indicated that the heptagons in 1 were non-aromatic, whereas the peripheral rings were highly aromatic. Compared to planar nanographene with the same number of π electrons, 1 had a similar optical gap due to a compromise between the decreased conjugation in the wrapped structure and enhanced electronic delocalization at the rim. Electrochemical studies showed that 1 had low-lying oxidation potentials, which was attributed to the nitrogen-doping.

3.
Adv Sci (Weinh) ; 9(19): e2105034, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35038238

RESUMEN

Although water-soluble graphene quantum dots (GQDs) have shown various promising bio-applications due to their intriguing optical and chemical properties, the large heterogeneity in compositions, sizes, and shapes of these GQDs hampers the better understanding of their structure-properties correlation and further uses in terms of large-scale manufacturing practices and safety concerns. It is shown here that a water-soluble atomically-precise GQD (WAGQD-C96 ) is synthesized and exhibits a deep-red emission and excellent sonodynamic sensitization. By decorating sterically hindered water-soluble functional groups, WAGQD-C96 can be monodispersed in water without further aggregation. The deep-red emission of WAGQD-C96 facilitates the tracking of its bio-process, showing a good cell-uptake and long-time retention in tumor tissue. Compared to traditional molecular sonosensitizers, WAGQD-C96 generates superior reactive oxygen species and demonstrates excellent tumor inhibition potency as an anti-cancer sonosensitizer in in vivo studies. A good biosafety of WAGQD-C96 is validated in both in vitro and in vivo assays.


Asunto(s)
Grafito , Neoplasias , Puntos Cuánticos , Grafito/química , Neoplasias/terapia , Puntos Cuánticos/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...