Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 268(Pt 1): 131723, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38649072

RESUMEN

Endometrial injury poses a significant challenge in tissue regeneration, with type III collagen (COL III) playing a pivotal role in maintaining endometrial integrity and facilitating repair. Our study explored the utility of recombinant human type III collagen (RHC) as an intervention for endometrial damage. To address the challenges associated with the inherent instability and rapid degradation of COL III in vivo, we developed an RHC-HA hydrogel by conjugating RHC with hyaluronic acid (HA), thus ensuring a more stable and sustained delivery. Our findings suggested that the RHC-HA hydrogel significantly promoted endometrial regeneration and restored fertility. The hydrogel facilitated prolonged retention of RHC in the uterus, leading to a substantial improvement in the repair process. The synergistic interaction between RHC and HA greatly enhances cell proliferation and adhesion, surpassing the efficacy of HA or RHC alone. Additionally, the RHC-HA hydrogel demonstrated notable anti-fibrotic effects, which are crucial for preventing abnormalities during endometrial healing. These findings suggested that the RHC-HA hydrogel presented a therapeutic strategy in the treatment of uterine endometrial injuries, which may improve female reproductive health.


Asunto(s)
Colágeno Tipo III , Endometrio , Matriz Extracelular , Ácido Hialurónico , Hidrogeles , Proteínas Recombinantes , Regeneración , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Femenino , Endometrio/efectos de los fármacos , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/administración & dosificación , Animales , Colágeno Tipo III/metabolismo , Matriz Extracelular/efectos de los fármacos , Regeneración/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Materiales Biomiméticos/farmacología , Materiales Biomiméticos/química , Ratas , Adhesión Celular/efectos de los fármacos
2.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496417

RESUMEN

Type 1 diabetes (T1D) arises from autoimmune-mediated destruction of insulin-producing pancreatic beta cells. Recent advancements in the technology of generating pancreatic beta cells from human pluripotent stem cells (SC-beta cells) have facilitated the exploration of cell replacement therapies for treating T1D. However, the persistent threat of autoimmunity poses a significant challenge to the survival of transplanted SC-beta cells. Genetic engineering is a promising approach to enhance immune resistance of beta cells as we previously showed by inactivating of the Renalase (Rnls) gene. Here we demonstrate that Rnls loss-of-function in beta cells shape autoimmunity by mediating a regulatory Natural Killer (NK) cell phenotype important for the induction of tolerogenic antigen presenting cells. Rnls-deficient beta cells mediate cell-cell-contact-independent induction of hallmark anti-inflammatory cytokine Tgfß1 in NK cells. In addition, surface expression of key regulatory NK immune checkpoints CD47 and Ceacam1 are markedly elevated on beta cells deficient for Rnls. Enhanced glucose metabolism in Rnls mutant beta cells is responsible for upregulation of CD47 surface expression. These findings are crucial to a better understand how genetically engineered beta cells shape autoimmunity giving valuable insights for future therapeutic advancements to treat and cure T1D.

3.
BMC Geriatr ; 23(1): 606, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37759165

RESUMEN

BACKGROUND: The quality of life (QoL) of elderly patients with bone trauma is significantly decreased and is affected by many complex factors. This study aims to conduct a half-year follow-up survey to clarify QoL and its influencing factors in elderly patients with bone trauma in order to provide targeted care measures for elderly patients with bone trauma. METHODS: This was a longitudinal observational study. We used the 36-Item Short Form Health Survey (SF-36) to investigate and evaluate the QoL of 100 patients with bone trauma at the time of hospital discharge and 1 month, 3 months, and 6 months after discharge. Our previous study confirmed that the SF-36 had higher reliability and validity for evaluating the QoL of elderly patients with bone trauma. At the same time, we also investigated the age, gender, location of bone trauma, and destination after discharge of those patients. Those factors that might affect the QoL of elderly patients with bone trauma were identified by univariate and multivariate analyses. RESULTS: The total physiological function, role-physical, bodily pain, vitality, social functioning, role-emotional, and mental health scores of elderly patients with bone trauma gradually increased from the time of discharge to 1 month, 3 months, and 6 months after discharge, and there were significant differences (p < 0.001). However, there was no significant difference in the general health score in the different periods (P = 0.095). The total QoL scores also significantly differed (F = 118.61, P < 0.001) at the time of discharge (335.252 ± 127.572) and 1 month (285.149 ± 112.827), 3 months (479.344 ± 153.663), and 6 months after discharge (544.396 ± 166.536). The univariate analysis results showed that the location of bone trauma (P < 0.005) and the destination after discharge (P < 0.001) were the main factors affecting QoL in different periods. The results of the multivariate analysis showed that the location of bone trauma was an important factor affecting QoL (P < 0.005 in different periods). Whether to undergo surgery was a factor affecting the patients' long-term QoL (P < 0.005 at 6 months after discharge). CONCLUSIONS: Although the QoL of elderly patients with bone trauma gradually improves after injury, their recovery time is long, and the influencing factors are complex. Follow-up services should continue for at least six months for these patients, and comprehensive treatment and long-term rehabilitation services should be provided.


Asunto(s)
Pacientes , Calidad de Vida , Anciano , Humanos , Estudios de Seguimiento , Reproducibilidad de los Resultados , Emociones
4.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37628741

RESUMEN

The ovary is a highly susceptible organ to senescence, and granulosa cells (GCs) have a crucial role in oocyte development promotion and overall ovarian function maintenance. As age advances, GCs apoptosis and dysfunction escalate, leading to ovarian aging. However, the molecular mechanisms underpinning ovarian aging remain poorly understood. In this study, we observed a correlation between the age-related decline of fertility and elevated expression levels of miR-143-3p in female mice. Moreover, miR-143-3p was highly expressed in senescent ovarian GCs. The overexpression of miR-143-3p in GCs not only hindered their proliferation and induced senescence-associated secretory phenotype (SASP) but also impeded steroid hormone synthesis by targeting ubiquitin-conjugating enzyme E2 E3 (Ube2e3) and luteinizing hormone and human chorionic gonadotropin receptor (Lhcgr). These findings suggest that miR-143-3p plays a substantial role in senescence and steroid hormone synthesis in GCs, indicating its potential as a therapeutic target for interventions in the ovarian aging process.


Asunto(s)
Estradiol , MicroARNs , Humanos , Femenino , Animales , Ratones , Ovario , Receptores Acoplados a Proteínas G , Células de la Granulosa , Fenotipo Secretor Asociado a la Senescencia , MicroARNs/genética
5.
bioRxiv ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37292780

RESUMEN

Brown adipose tissue (BAT) has the capacity to regulate systemic metabolism through the secretion of signaling lipids. N6-methyladenosine (m 6 A) is the most prevalent and abundant post-transcriptional mRNA modification and has been reported to regulate BAT adipogenesis and energy expenditure. In this study, we demonstrate that the absence of m 6 A methyltransferase-like 14 (METTL14), modifies the BAT secretome to initiate inter-organ communication to improve systemic insulin sensitivity. Importantly, these phenotypes are independent of UCP1-mediated energy expenditure and thermogenesis. Using lipidomics, we identified prostaglandin E2 (PGE2) and prostaglandin F2a (PGF2a) as M14 KO -BAT-secreted insulin sensitizers. Notably, circulatory PGE2 and PGF2a levels are inversely correlated with insulin sensitivity in humans. Furthermore, in vivo administration of PGE2 and PGF2a in high-fat diet-induced insulin-resistant obese mice recapitulates the phenotypes of METTL14 deficient animals. PGE2 or PGF2a improves insulin signaling by suppressing the expression of specific AKT phosphatases. Mechanistically, METTL14-mediated m 6 A installation promotes decay of transcripts encoding prostaglandin synthases and their regulators in human and mouse brown adipocytes in a YTHDF2/3-dependent manner. Taken together, these findings reveal a novel biological mechanism through which m 6 A-dependent regulation of BAT secretome regulates systemic insulin sensitivity in mice and humans. Highlights: Mettl14 KO -BAT improves systemic insulin sensitivity via inter-organ communication; PGE2 and PGF2a are BAT-secreted insulin sensitizers and browning inducers;PGE2 and PGF2a sensitize insulin responses through PGE2-EP-pAKT and PGF2a-FP-AKT axis; METTL14-mediated m 6 A installation selectively destabilizes prostaglandin synthases and their regulator transcripts; Targeting METTL14 in BAT has therapeutic potential to enhance systemic insulin sensitivity.

6.
Mol Ther Nucleic Acids ; 32: 879-895, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37273781

RESUMEN

MicroRNAs (miRNAs) regulate various cellular functions, but their specific roles in the regulation of Leydig cells (LCs) have yet to be fully understood. Here, we found that the expression of miR-300-3p varied significantly during the differentiation from progenitor LCs (PLCs) to adult LCs (ALCs). High expression of miR-300-3p in PLCs inhibited testosterone production and promoted PLC proliferation by targeting the steroidogenic factor-1 (Sf-1) and transcription factor forkhead box O1 (FoxO1) genes, respectively. As PLCs differentiated into ALCs, the miR-300-3p expression level significantly decreased, which promoted testosterone biosynthesis and suppressed proliferation of ALCs by upregulating SF-1 and FoxO1 expression. The LH/METTL3/SMURF2/SMAD2 cascade pathway controlled miR-300-3p expression, in which luteinizing hormone (LH) upregulated SMAD-specific E3 ubiquitin protein ligase 2 (SMURF2) expression through methyltransferase like 3 (METTL3)-mediated Smurf2 N6-methyladenosine modification. The Smurf2 then suppressed miR-300 transcription by inhibiting SMAD family member 2 (SMAD2) binding to the promoter of miR-300. Notably, miR-300-3p was associated with an obesity-related testosterone deficiency in men and the inhibition of miR-300-3p effectively rescued testosterone deficiency in obese mice. These findings suggested that miR-300-3p plays a pivotal role in LC differentiation and function, and could be a promising diagnostic or therapeutic target for obesity-related testosterone deficiency.

7.
J Nutr Biochem ; 114: 109275, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36669706

RESUMEN

Diabetes is caused by the interplay between genetic and environmental factors, therefore changes of lifestyle and dietary patterns are the most common practices for diabetes intervention. Protein restriction and caloric restriction have been shown to improve diabetic hyperglycemia in both animal models and humans. We report here the effectiveness of intermittent protein restriction (IPR) for the intervention of diabetes in Zucker diabetic fatty (ZDF) rats. Administration of IPR significantly reduced hyperglycemia and decreased glucose production in the liver. IPR protected pancreatic islets from diabetes-mediated damages as well as elevated the number and the proliferation activity of ß cells. Single-cell RNA sequencing performed with isolated islets from the ZDF rats revealed that IPR was able to reverse the diabetes-associated ß cell dedifferentiation. In addition, diabetic ß cells in ZDF rats were associated with increased expressions of islet amyloid polypeptide, chromogranin and genes involved in endoplasmic reticulum stress. A ß cell dedifferentiation marker Cd81 was also increased in the ß cells of diabetic rats. In contrast, the expressions of D-box binding PAR bZIP transcription factor Dbp and immediate-early response genes were reduced in the diabetic ß cells. In conclusion, these results indicated that IPR is effective in glycemic control and ß cell protection in a diabetic rat model. In addition, diabetes in ZDF rats is associated with changes in the expression of genes involved in many facets of ß cell functions.


Asunto(s)
Diabetes Mellitus Experimental , Dieta con Restricción de Proteínas , Hiperglucemia , Islotes Pancreáticos , Animales , Ratas , Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Homeostasis , Hiperglucemia/prevención & control , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratas Zucker , Proteínas en la Dieta/metabolismo , Proteínas en la Dieta/farmacología
8.
Biosci Rep ; 43(2)2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36714968

RESUMEN

Diabetes mellitus, especially Type 2 diabetes (T2D), is caused by multiple factors including genetics, diets, and lifestyles. Diabetes is a chronic condition and is among the top 10 causes of death globally. Nutritional intervention is one of the most important and effective strategies for T2D management. It is well known that most of intervention strategies can lower blood glucose level and improve insulin sensitivity in peripheral tissues. However, the regulation of pancreatic ß cells by dietary intervention is not well characterized. In this review, we summarized some of the commonly used nutritional methods for diabetes intervention. We then discussed the effects and the underlying mechanisms of nutritional intervention in improving the cell mass and function of pancreatic islet ß cells. With emerging intervention strategies and in-depth investigation, we are expecting to have a better understanding about the effectiveness of dietary interventions in ameliorating T2D in the future.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Células Secretoras de Insulina , Humanos , Dieta , Insulina
9.
Sci Bull (Beijing) ; 67(7): 733-747, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36546138

RESUMEN

Diabetes is caused by the interplay between genetics and environmental factors, tightly linked to lifestyle and dietary patterns. In this study, we explored the effectiveness of intermittent protein restriction (IPR) in diabetes control. IPR drastically reduced hyperglycemia in both streptozotocin-treated and leptin receptor-deficient db/db mouse models. IPR improved the number, proliferation, and function of ß cells in pancreatic islets. IPR reduced glucose production in the liver and elevated insulin signaling in the skeletal muscle. IPR elevated serum level of FGF21, and deletion of the Fgf21 gene in the liver abrogated the hypoglycemic effect of IPR without affecting ß cells. IPR caused less lipid accumulation and damage in the liver than that caused by continuous protein restriction in streptozotocin-treated mice. Single-cell RNA sequencing using mouse islets revealed that IPR reversed diabetes-associated ß cell reduction and immune cell accumulation. As IPR is not based on calorie restriction and is highly effective in glycemic control and ß cell protection, it has promising translational potential in the future.


Asunto(s)
Diabetes Mellitus Experimental , Islotes Pancreáticos , Ratones , Animales , Diabetes Mellitus Experimental/metabolismo , Dieta con Restricción de Proteínas , Estreptozocina/metabolismo , Glucosa/metabolismo , Homeostasis
10.
Mol Nutr Food Res ; 65(23): e2100381, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34632700

RESUMEN

SCOPE: Liver plays a central role in maintaining lipid homeostasis which is dysregulated in non-alcoholic fatty liver disease (NAFLD) caused by overload of dietary fat, increase in lipid synthesis, and alteration of fatty acid oxidation in the liver. In this study, we aimed to investigate whether intermittent calorie restriction using a fasting-mimicking diet (FMD) is able to slow down the progression of NAFLD in mice. METHODS AND RESULTS: This study analyzed the intervention activity of a FMD low in carbohydrate/protein but high in dietary fibers with a NAFLD mouse model induced by high-fat high-sucrose diet (HFHSD). Intermittent application of the FMD reduces HFHSD-induced obesity and glucose intolerance. The FMD decreases the size of adipocytes and elevates expression of lipolysis genes and HSL protein in white adipose tissue. HFHSD-induced lipid accumulation in the liver is reduced by the FMD, accompanied by a reduction of macrophage marker in the liver. RNA sequencing reveals that the expression of a number of genes involved in fatty acid oxidation is elevated by the FMD. CONCLUSION: The findings indicate that intermittent application of the FMD can improve NAFLD, at least in part, through increased lipolysis in white adipose tissue and elevated fatty acid oxidation in the liver.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa/efectos adversos , Ayuno , Ácidos Grasos/metabolismo , Lipólisis , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo
11.
Nutr Metab (Lond) ; 16: 60, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31485253

RESUMEN

BACKGROUND: Calorie restriction (CR) has been well proved to be a powerful tool to improve metabolic health associated with aging; and many types of CR have been proposed. Intermittent CR has become a trend in recent years due to its better compliance than continuous CR every day. However, there are few studies that directly compare the interventional activity of intermittent CR vs continuous CR in metabolic disorders such as diabetes. METHODS: In this study, we analyzed two protocols of intermittent CR with the calorie-matched continuous CR in two diabetic mouse models including db/db and streptozotocin-treated mice. Intermittent CR was carried out by a fasting-mimicking diet (FMD, with 30% calorie intake of the control per day) for 2 days or 5 days (i.e., 2-5 or 5-9 regimes followed by free eating for 5 or 9 days respectively). RESULTS: In the two diabetic mouse models, both intermittent CR and continuous CR significantly reduced fasting blood glucose level and improved insulin sensitivity. However, intermittent CR performed significantly better than continuous CR in improving glycemic control and insulin sensitivity in db/db mice. In addition, intermittent CR improved the glucose homeostasis of the db/db mice without causing loss of body weight. Analyses with the pancreatic islets reveal that intermittent CR profoundly elevated the number of insulin-positive cells in both diabetic mouse models. CONCLUSIONS: Our study indicated that both intermittent CR and continuous CR can lower fasting blood glucose level in the diabetic mice, while intermittent CR is better than the latter in improving glucose homeostasis in db/db mice.

12.
Metabolism ; 94: 88-95, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30831144

RESUMEN

OBJECTIVE: Low-density lipoprotein cholesterol (LDL-C) is the hallmark of atherosclerotic cardiovascular diseases. The hepatic LDL receptor (LDLR) plays an important role in clearance of circulating LDL-C. PCSK9 facilitates degradation of LDLR in the lysosome and antagonizing PCSK9 has been successfully used in the clinic to reduce blood LDL-C level. Here we identify a new player that modulates LDLR interaction with PCSK9, thus controlling LDLR degradation and cholesterol homeostasis. METHODS: The blood LDL-C and cholesterol levels were analyzed in mice with hepatic deletion of Paqr3 gene. The half-life of LDLR was analyzed in HepG2 cells. The interaction of PAQR3 with LDLR and PCSK9 was analyzed by co-immunoprecipitation and immunofluorescent staining. RESULTS: The blood LDL-C and total cholesterol levels in the mice with hepatic deletion of Paqr3 gene were significantly lower than the control mice after feeding with high-fat diet (p < 0.001 and p < 0.05 respectively). The steady-state level of LDLR protein is elevated by Paqr3 knockdown/deletion and reduced by PAQR3 overexpression. The half-life of LDLR protein is increased by Paqr3 knockdown and accelerated by PAQR3 overexpression. PAQR3 interacts with the ß-sheet domain of LDLR and the P-domain of PCSK9 respectively. In addition, PAQR3 can be localized in early endosomes and colocalized with LDLR, PCSK9 and LDL. Mechanistically, PAQR3 enhances the interaction between LDLR and PCSK9. CONCLUSION: Our study reveals that PAQR3 plays a pivotal role in controlling hepatic LDLR degradation and blood LDL-C level via modulating LDLR-PCSK9 interaction.


Asunto(s)
Colesterol/sangre , Péptidos y Proteínas de Señalización Intracelular/farmacología , Proproteína Convertasa 9/metabolismo , Receptores de LDL/metabolismo , Animales , LDL-Colesterol/sangre , Células Hep G2 , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Hígado/metabolismo , Proteínas de la Membrana , Ratones , Unión Proteica/efectos de los fármacos
13.
Nutr Metab (Lond) ; 15: 80, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30479647

RESUMEN

Fasting and especially intermittent fasting have been shown to be an effective intervention in many diseases, such as obesity and diabetes. The fasting-mimicking diet (FMD) has recently been found to ameliorate metabolic disorders. To investigate the effect of a new type of low-protein low-carbohydrate FMD on diabetes, we tested an FMD in db/db mice, a genetic model of type 2 diabetes. The diet was administered every other week for a total of 8 weeks. The intermittent FMD normalized blood glucose levels in db/db mice, with significant improvements in insulin sensitivity and ß cell function. The FMD also reduced hepatic steatosis in the mice. Deterioration of pancreatic islets and the loss of ß cells in the diabetic mice were prevented by the FMD. The expression of ß cell progenitor marker Ngn3 was increased by the FMD. In addition, the FMD led to the reconstruction of gut microbiota. Intermittent application of the FMD increased the genera of Parabacteroides and Blautia while reducing Prevotellaceae, Alistipes and Ruminococcaceae. The changes in these bacteria were also correlated with the fasting blood glucose levels of the mice. Furthermore, intermittent FMD was able to reduce fasting blood glucose level and increase ß cells in STZ-induced type 1 diabetic mouse model. In conclusion, our study provides evidence that the intermittent application of an FMD is able to effectively intervene in the progression of diabetes in mice.

14.
Heliyon ; 4(9): e00830, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30294696

RESUMEN

Continuous deficiency of leucine, a member of branched chain amino acids, is able to reduce obesity and improve insulin sensitivity in mice. Intermittent fasting has been shown to be effective in intervention of metabolic disorders including diabetes. However, it is unknown whether intermittent leucine deprivation can intervene in type 2 diabetes progression. We administered leucine-deprived food every other day in db/db mice, a type 2 diabetes model, for a total of eight weeks to investigate the interventional effect of intermittent leucine deprivation. Intermittent leucine deprivation significantly reduces hyperglycemia in db/db mice independent of body weight change, together with improvement in glucose tolerance and insulin sensitivity. The total area of pancreatic islets and ß cell number are increased by intermittent leucine deprivation, accompanied by elevated proliferation of ß cells. The expression level of Ngn3, a ß cell progenitor marker, is also increased by leucine-deleted diet. However, leucine deficiency engenders an increase in fat mass and a decrease in lean mass. Lipid accumulation in the liver is elevated and liver function is compromised by leucine deprivation. In addition, leucine deficiency alters the composition of gut microbiota. Leucine deprivation increases the genera of Bacteroides, Alloprevotella, Rikenellaceae while reduces Lachnospiraceae and these changes are correlated with fasting blood glucose levels of the mice. Collectively, our data demonstrated that intermittent leucine deprivation can intervene in the progression of type 2 diabetes in db/db mice. However, leucine deficiency reduces lean mass and aggravates hepatic steatosis in the mouse.

15.
J Mol Cell Biol ; 9(5): 409-421, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28992327

RESUMEN

CDK4 is crucial for G1-to-S transition of cell cycle. It is well established that ubiquitin-mediated degradations of CDK inhibitors and cyclins are pivotal for the timely and unidirectional progression of cell cycle. However, how CDK4 itself is modulated by ubiquitin-mediated degradation has been elusive. Here we report that the steady-state level of CDK4 is controlled by PAQR4, a member of the progestin and adipoQ receptor family, and SKP2, an E3 ubiquitin ligase. Knockdown of PAQR4 leads to reduction of cell proliferation, accompanied by reduced protein level of CDK4. PAQR4 reduces polyubiquitination and degradation of CDK4. PAQR4 interacts with the C-terminal lobe of CDK4. On the other hand, SKP2 also interacts with the C-terminal lobe of CDK4 and enhances polyubiquitination and degradation of CDK4. Importantly, PAQR4 and SKP2 bind to the same region in CDK4, and PAQR4 competes with SKP2 for the binding, thereby abrogating SKP2-mediated ubiquitination of CDK4. Using a two-stage DMBA/TPA-induced skin cancer model, we find that PAQR4-deleted mice are resistant to chemical carcinogen-induced tumor formation. Collectively, our findings reveal that the steady-state level of CDK4 is controlled by the antagonistic actions between PAQR4 and SKP2, contributing to modulation of cell proliferation and tumorigenesis.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Receptores de Progesterona/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Eliminación de Gen , Humanos , Ratones , Modelos Biológicos , Unión Proteica , Proteolisis , Receptores de Progesterona/genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...