Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 50(10): 8259-8270, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37572210

RESUMEN

BACKGROUND: The ClaH3K4s and ClaH3K27s gene families are subfamilies of the SET family, each with a highly conserved SET structure domain and a PHD structural domain. Both participate in histone protein methylation, which affects the chromosome structure and gene expression, and is essential for fruit growth and development. METHODS AND RESULTS: In order to demonstrate the structure and expression characteristics of ClaH3K4s and ClaH3K27s in watermelon, members of the watermelon H3K4 and H3K27 gene families were identified, and their chromosomal localization, gene structure, and protein structural domains were analyzed. The phylogeny and covariance of the gene families with other species were subsequently determined, and the expression profiles were obtained by performing RNA-Seq and qRT-PCR. The watermelon genome had five H3K4 genes with 3207-8043 bp nucleotide sequence lengths and four H3K27 genes with a 1107-5499 bp nucleotide sequence. Synteny analysis revealed the close relationship between watermelon and cucumber, with the majority of members displaying a one-to-one covariance. Approximately half of the 'Hua-Jing 13 watermelon' ClaH3K4s and ClaH3K27s genes were expressed more in the late fruit development stages, while the changes were minimal for the remaining half. H3K4-2 expression was observed to be slightly greater on day 21 compared to other periods. Moreover, ClaH3K27-1 and ClaH3K27-2 were hardly expressed throughout the developing period, and ClaH3K27-4 exhibited the highest expression. CONCLUSION: These results serve as a basis for further functional characterization of the H3K4 and H3K27 genes in the fruit development of watermelon.


Asunto(s)
Citrullus , Citrullus/genética , Frutas/metabolismo , Secuencia de Bases , Reacción en Cadena de la Polimerasa , Sintenía , Regulación de la Expresión Génica de las Plantas/genética , Filogenia
2.
PLoS One ; 18(8): e0290853, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37647311

RESUMEN

Microbes are an important part of the vineyard ecosystem, which significantly influence the quality of grapes. Previously, we identified a bud mutant variety (named 'Fengzao') from 'Kyoho' grapes. The variation of microbial communities in grape and its bud mutant variety has not been studied yet. So, in this study, with the samples of both 'Fengzao' and 'Kyoho', we conducted high-throughput microbiome sequencing and investigated their microbial communities in different tissues. Obvious differences were observed in the microbial communities between 'Fengzao' and 'Kyoho'. The fruit and the stem are the tissues with relatively higher abundance of microbes, while the leaves contained less microbes. The fruit and the stem of 'Kyoho' and the stem of 'Fengzao' had relatively higher species diversity based on the alpha diversity analysis. Proteobacteria, Enterobacteriaceae and Rhodobacteraceae had significantly high abundance in 'Fengzao'. Firmicutes and Pseudomonas were highly abundant in the stems of 'Kyoho', and family of Spirochaetaceae, Anaplasmataceae, Chlorobiaceae, and Sphingomonadaceae, and genera of Spirochaeta, Sphingomonas, Chlorobaculum and Wolbachia were abundant in the fruits of 'Kyoho'. These identified microbes are main components of the microbial communities, and could be important regulators of grapevine growth and development. This study revealed the differences in the microbial compositions between 'Kyoho' and its bud mutant, and these identified microbes will be significant resources for the future researches on the quality regulation and disease control of grapevines.


Asunto(s)
Anaplasmataceae , Chlorobi , Microbiota , Vitis , Microbiota/genética , Enterobacteriaceae
3.
Funct Integr Genomics ; 23(3): 218, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393305

RESUMEN

Cucurbits are a diverse plant family that includes economically important crops, such as cucumber, watermelon, melon, and pumpkin. Knowledge of the roles that long terminal repeat retrotransposons (LTR-RTs) have played in diversification of cucurbit species is limited; to add to understanding of the roles of LTR-RTs, we assessed their distributions in four cucurbit species. We identified 381, 578, 1086, and 623 intact LTR-RTs in cucumber (Cucumis sativus L. var. sativus cv. Chinese Long), watermelon (Citrullus lanatus subsp. vulgaris cv. 97103), melon (Cucumis melo cv. DHL92), and Cucurbita (Cucurbita moschata var. Rifu), respectively. Among these LTR-RTs, the Ale clade of the Copia superfamily was the most abundant in all the four cucurbit species. Insertion time and copy number analysis revealed that an LTR-RT burst occurred approximately 2 million years ago in cucumber, watermelon, melon, and Cucurbita, and may have contributed to their genome size variation. Phylogenetic and nucleotide polymorphism analyses suggested that most LTR-RTs were formed after species diversification. Analysis of gene insertions by LTR-RTs revealed that the most frequent insertions were of Ale and Tekay and that genes related to dietary fiber synthesis were the most commonly affected by LTR-RTs in Cucurbita. These results increase our understanding of LTR-RTs and their roles in genome evolution and trait characterization in cucurbits.


Asunto(s)
Cucurbita , Retroelementos , Productos Agrícolas , Fenotipo , Filogenia , Retroelementos/genética , Cucurbita/genética
4.
J Agric Food Chem ; 71(31): 12140-12152, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37503871

RESUMEN

To gain a comprehensive understanding of non-histone methylation during berry ripening in grape (Vitis vinifera L.), the methylation of non-histone lysine residues was studied using a 4D label-free quantitative proteomics approach. In total, 822 methylation sites in 416 methylated proteins were identified, with xxExxx_K_xxxxxx as the conserved motif. Functional annotation of non-histone proteins with methylated lysine residues indicated that these proteins were mostly associated with "ripening and senescence", "energy metabolism", "oxidation-reduction process", and "stimulus response". Most of the genes encoding proteins subjected to methylation during grape berry ripening showed a significant increase in expression during maturation at least at one developmental stage. The correlation of methylated proteins with QTLs, SNPs, and selective regions associated with fruit quality and development was also investigated. This study reports the first proteomic analysis of non-histone lysine methylation in grape berry and indicates that non-histone methylation plays an important role in grape berry ripening.


Asunto(s)
Vitis , Vitis/anatomía & histología , Vitis/química , Vitis/metabolismo , Proteoma/metabolismo , Histonas/química , Metilación , Lisina/química , Péptidos/química , Mapas de Interacción de Proteínas , Perfilación de la Expresión Génica
6.
Plant Physiol ; 191(2): 1153-1166, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36440478

RESUMEN

Pearl of Csaba (PC) is a valuable backbone parent for early-ripening grapevine (Vitis vinifera) breeding, from which many excellent early ripening varieties have been bred. However, the genetic basis of the stable inheritance of its early ripening trait remains largely unknown. Here, the pedigree, consisting of 40 varieties derived from PC, was re-sequenced for an average depth of ∼30×. Combined with the resequencing data of 24 other late-ripening varieties, 5,795,881 high-quality single nucleotide polymorphisms (SNPs) were identified following a strict filtering pipeline. The population genetic analysis showed that these varieties could be distinguished clearly, and the pedigree was characterized by lower nucleotide diversity and stronger linkage disequilibrium than the non-pedigree varieties. The conserved haplotypes (CHs) transmitted in the pedigree were obtained via identity-by-descent analysis. Subsequently, the key genomic segments were identified based on the combination analysis of haplotypes, selective signatures, known ripening-related quantitative trait loci (QTLs), and transcriptomic data. The results demonstrated that varieties with a superior haplotype, H1, significantly (one-way ANOVA, P < 0.001) exhibited early grapevine berry development. Further analyses indicated that H1 encompassed VIT_16s0039g00720 encoding a folate/biopterin transporter protein (VvFBT) with a missense mutation. VvFBT was specifically and highly expressed during grapevine berry development, particularly at veraison. Exogenous folate treatment advanced the veraison of "Kyoho". This work uncovered core haplotypes and genomic segments related to the early ripening trait of PC and provided an important reference for the molecular breeding of early-ripening grapevine varieties.


Asunto(s)
Vitis , Vitis/metabolismo , Fitomejoramiento , Perfilación de la Expresión Génica/métodos , Transcriptoma , Frutas/metabolismo , Genómica
7.
Protoplasma ; 260(3): 757-766, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36089607

RESUMEN

Grape is an economically important crop but recalcitrant to Agrobacterium-mediated genetic transformation and in vitro regeneration. Here, we have developed a protocol for transient transformation of grapes by investigating the effects of explant pre-culture and duration of vacuum infiltration on transformation efficiency. Using sliced grape berries of "Shine-Muscat" (Vitis labrusca × Vitis vinifera) between the end of fruit expansion phase and the mature stage as explants, we firstly compared the effect of pre-culture explants into a susceptible state (incubation on Murashige and Skoog (MS) agar plate in the dark at 25 ± 1 °C for 48 h) with no pre-culture and then tested different vacuum infiltration times on transformation efficiency using ß-glucuronidase (GUS) reporter system. Pre-culture increased the susceptibility of explants to the agrobacteria infection and increased transient transformation efficiency as assessed by histochemical GUS activity, with intense blue coloration compared with the faint staining observed in the non-susceptible explants. Using a Circulating Water Vacuum Pump system to facilitate agrobacteria entry into berry cells, we tested vacuum durations of 5, 10, and 15 min and observed that transformation efficiency increased with vacuum duration of infiltration. These results were confirmed by relative gene expression of GUS transgene as assessed by RT-qPCR and GUS activity assay. To further confirm the usefulness of our protocol, we transiently transformed grape berries with the hydrogen peroxide sensor gene VvHPCA3, and this was confirmed by gene expression analysis as well as increased sensitivity of the explants to hydrogen peroxide treatment. Overall, this study has resulted in a simple but efficient transient transformation protocol for grape berries and would be a valuable tool for the rapid testing of gene function and the study of key regulatory networks in this important crop.


Asunto(s)
Vitis , Vitis/genética , Frutas , Plantas Modificadas Genéticamente/genética , Agrobacterium tumefaciens , Técnicas de Transferencia de Gen , Peróxido de Hidrógeno , Transformación Genética
8.
Hortic Res ; 9: uhac023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35531313

RESUMEN

Non-conventional peptides (NCPs), which are peptides derived from previously unannotated coding sequences, play important biological roles in plants. In this study, we used peptidogenomic methods that integrated mass spectrometry (MS) peptidomics and a six-frame translation database to extensively identify NCPs in grape. In total, 188 and 2021 non-redundant peptides from the Arabidopsis thaliana and Vitis vinifera L. protein database at Ensembl/URGI and an individualized peptidogenomic database were identified. Unlike conventional peptides, these NCPs derived mainly from intergenic, intronic, upstream ORF, 5'UTR, 3'UTR, and downstream ORF regions. These results show that unannotated regions are translated more broadly than we thought. We also found that most NCPs were derived from regions related to phenotypic variations, LTR retrotransposons, and domestication selection, indicating that the NCPs have an important function in complex biological processes. We also found that the NCPs were developmentally specific and had transient and specific functions in grape berry development. In summary, our study is the first to extensively identify NCPs in grape. It demonstrated that there was a large amount of translation in the genome. These results lay a foundation for studying the functions of NCPs and also provide a reference for the discovery of new functional genes in grape.

9.
Plant Physiol Biochem ; 164: 195-204, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34004557

RESUMEN

Pentatricopeptide repeat (PPR) proteins play important roles in plant growth and development. However, little is known about their functions in the leaf morphogenesis of Jingxiu grape (Vitis vinifera L.). Here, we explored the function of VvPPR1, which encodes a DYW-type PPR protein in grape. We showed that VvPPR1 is involved in the regulation of leaf rolling, anthocyanin accumulation, and trichome formation in Arabidopsis thaliana. Analysis of structural characteristics showed that VvPPR1 is a DYW-type PPR gene in the PLS subfamily consisting of 15 PPR motifs. The N-terminal had a targeted chloroplast site, and the C-terminal had a DYW domain. Quantitative PCR analysis revealed that the expression level of VvPPR1 was highest in grape leaves. Subcellular localization revealed that VvPPR1 is localized in the cytoplasm and chloroplast. VvPPR1-overexpressing plants had rolled leaves, high degrees of anthocyanin accumulation, and longer trichomes. The expression levels of genes related to these phenotypes were either significantly up-regulated or down-regulated. These results demonstrate that VvPPR1 is involved in leaf rolling, anthocyanin accumulation, and trichome formation in Arabidopsis; more generally, our findings indicate that VvPPR1 could be a target for improving the cultivation of horticultural crops.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Vitis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Edición de ARN , Vitis/genética , Vitis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...