Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(8): e0290853, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37647311

RESUMEN

Microbes are an important part of the vineyard ecosystem, which significantly influence the quality of grapes. Previously, we identified a bud mutant variety (named 'Fengzao') from 'Kyoho' grapes. The variation of microbial communities in grape and its bud mutant variety has not been studied yet. So, in this study, with the samples of both 'Fengzao' and 'Kyoho', we conducted high-throughput microbiome sequencing and investigated their microbial communities in different tissues. Obvious differences were observed in the microbial communities between 'Fengzao' and 'Kyoho'. The fruit and the stem are the tissues with relatively higher abundance of microbes, while the leaves contained less microbes. The fruit and the stem of 'Kyoho' and the stem of 'Fengzao' had relatively higher species diversity based on the alpha diversity analysis. Proteobacteria, Enterobacteriaceae and Rhodobacteraceae had significantly high abundance in 'Fengzao'. Firmicutes and Pseudomonas were highly abundant in the stems of 'Kyoho', and family of Spirochaetaceae, Anaplasmataceae, Chlorobiaceae, and Sphingomonadaceae, and genera of Spirochaeta, Sphingomonas, Chlorobaculum and Wolbachia were abundant in the fruits of 'Kyoho'. These identified microbes are main components of the microbial communities, and could be important regulators of grapevine growth and development. This study revealed the differences in the microbial compositions between 'Kyoho' and its bud mutant, and these identified microbes will be significant resources for the future researches on the quality regulation and disease control of grapevines.


Asunto(s)
Anaplasmataceae , Chlorobi , Microbiota , Vitis , Microbiota/genética , Enterobacteriaceae
2.
Mol Biol Rep ; 50(10): 8259-8270, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37572210

RESUMEN

BACKGROUND: The ClaH3K4s and ClaH3K27s gene families are subfamilies of the SET family, each with a highly conserved SET structure domain and a PHD structural domain. Both participate in histone protein methylation, which affects the chromosome structure and gene expression, and is essential for fruit growth and development. METHODS AND RESULTS: In order to demonstrate the structure and expression characteristics of ClaH3K4s and ClaH3K27s in watermelon, members of the watermelon H3K4 and H3K27 gene families were identified, and their chromosomal localization, gene structure, and protein structural domains were analyzed. The phylogeny and covariance of the gene families with other species were subsequently determined, and the expression profiles were obtained by performing RNA-Seq and qRT-PCR. The watermelon genome had five H3K4 genes with 3207-8043 bp nucleotide sequence lengths and four H3K27 genes with a 1107-5499 bp nucleotide sequence. Synteny analysis revealed the close relationship between watermelon and cucumber, with the majority of members displaying a one-to-one covariance. Approximately half of the 'Hua-Jing 13 watermelon' ClaH3K4s and ClaH3K27s genes were expressed more in the late fruit development stages, while the changes were minimal for the remaining half. H3K4-2 expression was observed to be slightly greater on day 21 compared to other periods. Moreover, ClaH3K27-1 and ClaH3K27-2 were hardly expressed throughout the developing period, and ClaH3K27-4 exhibited the highest expression. CONCLUSION: These results serve as a basis for further functional characterization of the H3K4 and H3K27 genes in the fruit development of watermelon.


Asunto(s)
Citrullus , Citrullus/genética , Frutas/metabolismo , Secuencia de Bases , Reacción en Cadena de la Polimerasa , Sintenía , Regulación de la Expresión Génica de las Plantas/genética , Filogenia
3.
J Agric Food Chem ; 71(31): 12140-12152, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37503871

RESUMEN

To gain a comprehensive understanding of non-histone methylation during berry ripening in grape (Vitis vinifera L.), the methylation of non-histone lysine residues was studied using a 4D label-free quantitative proteomics approach. In total, 822 methylation sites in 416 methylated proteins were identified, with xxExxx_K_xxxxxx as the conserved motif. Functional annotation of non-histone proteins with methylated lysine residues indicated that these proteins were mostly associated with "ripening and senescence", "energy metabolism", "oxidation-reduction process", and "stimulus response". Most of the genes encoding proteins subjected to methylation during grape berry ripening showed a significant increase in expression during maturation at least at one developmental stage. The correlation of methylated proteins with QTLs, SNPs, and selective regions associated with fruit quality and development was also investigated. This study reports the first proteomic analysis of non-histone lysine methylation in grape berry and indicates that non-histone methylation plays an important role in grape berry ripening.


Asunto(s)
Vitis , Vitis/anatomía & histología , Vitis/química , Vitis/metabolismo , Proteoma/metabolismo , Histonas/química , Metilación , Lisina/química , Péptidos/química , Mapas de Interacción de Proteínas , Perfilación de la Expresión Génica
5.
Funct Integr Genomics ; 23(3): 218, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393305

RESUMEN

Cucurbits are a diverse plant family that includes economically important crops, such as cucumber, watermelon, melon, and pumpkin. Knowledge of the roles that long terminal repeat retrotransposons (LTR-RTs) have played in diversification of cucurbit species is limited; to add to understanding of the roles of LTR-RTs, we assessed their distributions in four cucurbit species. We identified 381, 578, 1086, and 623 intact LTR-RTs in cucumber (Cucumis sativus L. var. sativus cv. Chinese Long), watermelon (Citrullus lanatus subsp. vulgaris cv. 97103), melon (Cucumis melo cv. DHL92), and Cucurbita (Cucurbita moschata var. Rifu), respectively. Among these LTR-RTs, the Ale clade of the Copia superfamily was the most abundant in all the four cucurbit species. Insertion time and copy number analysis revealed that an LTR-RT burst occurred approximately 2 million years ago in cucumber, watermelon, melon, and Cucurbita, and may have contributed to their genome size variation. Phylogenetic and nucleotide polymorphism analyses suggested that most LTR-RTs were formed after species diversification. Analysis of gene insertions by LTR-RTs revealed that the most frequent insertions were of Ale and Tekay and that genes related to dietary fiber synthesis were the most commonly affected by LTR-RTs in Cucurbita. These results increase our understanding of LTR-RTs and their roles in genome evolution and trait characterization in cucurbits.


Asunto(s)
Cucurbita , Retroelementos , Productos Agrícolas , Fenotipo , Filogenia , Retroelementos/genética , Cucurbita/genética
6.
Plant Physiol ; 191(2): 1153-1166, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36440478

RESUMEN

Pearl of Csaba (PC) is a valuable backbone parent for early-ripening grapevine (Vitis vinifera) breeding, from which many excellent early ripening varieties have been bred. However, the genetic basis of the stable inheritance of its early ripening trait remains largely unknown. Here, the pedigree, consisting of 40 varieties derived from PC, was re-sequenced for an average depth of ∼30×. Combined with the resequencing data of 24 other late-ripening varieties, 5,795,881 high-quality single nucleotide polymorphisms (SNPs) were identified following a strict filtering pipeline. The population genetic analysis showed that these varieties could be distinguished clearly, and the pedigree was characterized by lower nucleotide diversity and stronger linkage disequilibrium than the non-pedigree varieties. The conserved haplotypes (CHs) transmitted in the pedigree were obtained via identity-by-descent analysis. Subsequently, the key genomic segments were identified based on the combination analysis of haplotypes, selective signatures, known ripening-related quantitative trait loci (QTLs), and transcriptomic data. The results demonstrated that varieties with a superior haplotype, H1, significantly (one-way ANOVA, P < 0.001) exhibited early grapevine berry development. Further analyses indicated that H1 encompassed VIT_16s0039g00720 encoding a folate/biopterin transporter protein (VvFBT) with a missense mutation. VvFBT was specifically and highly expressed during grapevine berry development, particularly at veraison. Exogenous folate treatment advanced the veraison of "Kyoho". This work uncovered core haplotypes and genomic segments related to the early ripening trait of PC and provided an important reference for the molecular breeding of early-ripening grapevine varieties.


Asunto(s)
Vitis , Vitis/metabolismo , Fitomejoramiento , Perfilación de la Expresión Génica/métodos , Transcriptoma , Frutas/metabolismo , Genómica
7.
Protoplasma ; 260(3): 757-766, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36089607

RESUMEN

Grape is an economically important crop but recalcitrant to Agrobacterium-mediated genetic transformation and in vitro regeneration. Here, we have developed a protocol for transient transformation of grapes by investigating the effects of explant pre-culture and duration of vacuum infiltration on transformation efficiency. Using sliced grape berries of "Shine-Muscat" (Vitis labrusca × Vitis vinifera) between the end of fruit expansion phase and the mature stage as explants, we firstly compared the effect of pre-culture explants into a susceptible state (incubation on Murashige and Skoog (MS) agar plate in the dark at 25 ± 1 °C for 48 h) with no pre-culture and then tested different vacuum infiltration times on transformation efficiency using ß-glucuronidase (GUS) reporter system. Pre-culture increased the susceptibility of explants to the agrobacteria infection and increased transient transformation efficiency as assessed by histochemical GUS activity, with intense blue coloration compared with the faint staining observed in the non-susceptible explants. Using a Circulating Water Vacuum Pump system to facilitate agrobacteria entry into berry cells, we tested vacuum durations of 5, 10, and 15 min and observed that transformation efficiency increased with vacuum duration of infiltration. These results were confirmed by relative gene expression of GUS transgene as assessed by RT-qPCR and GUS activity assay. To further confirm the usefulness of our protocol, we transiently transformed grape berries with the hydrogen peroxide sensor gene VvHPCA3, and this was confirmed by gene expression analysis as well as increased sensitivity of the explants to hydrogen peroxide treatment. Overall, this study has resulted in a simple but efficient transient transformation protocol for grape berries and would be a valuable tool for the rapid testing of gene function and the study of key regulatory networks in this important crop.


Asunto(s)
Vitis , Vitis/genética , Frutas , Plantas Modificadas Genéticamente/genética , Agrobacterium tumefaciens , Técnicas de Transferencia de Gen , Peróxido de Hidrógeno , Transformación Genética
8.
J Integr Plant Biol ; 64(12): 2327-2343, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36218272

RESUMEN

Polyploids have elevated stress tolerance, but the underlying mechanisms remain largely elusive. In this study, we showed that naturally occurring tetraploid plants of trifoliate orange (Poncirus trifoliata (L.) Raf.) exhibited enhanced cold tolerance relative to their diploid progenitors. Transcriptome analysis revealed that whole-genome duplication was associated with higher expression levels of a range of well-characterized cold stress-responsive genes. Global DNA methylation profiling demonstrated that the tetraploids underwent more extensive DNA demethylation in comparison with the diploids under cold stress. CHH methylation in the promoters was associated with up-regulation of related genes, whereas CG, CHG, and CHH methylation in the 3'-regions was relevant to gene down-regulation. Of note, genes involved in unsaturated fatty acids (UFAs) and jasmonate (JA) biosynthesis in the tetraploids displayed different CHH methylation in the gene flanking regions and were prominently up-regulated, consistent with greater accumulation of UFAs and JA when exposed to the cold stress. Collectively, our findings explored the difference in cold stress response between diploids and tetraploids at both transcriptional and epigenetic levels, and gained new insight into the molecular mechanisms underlying enhanced cold tolerance of the tetraploid. These results contribute to uncovering a novel regulatory role of DNA methylation in better cold tolerance of polyploids.


Asunto(s)
Poncirus , Poncirus/genética , Poncirus/metabolismo , Tetraploidía , Metilación , Ácidos Grasos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Frío
9.
Hortic Res ; 9: uhac023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35531313

RESUMEN

Non-conventional peptides (NCPs), which are peptides derived from previously unannotated coding sequences, play important biological roles in plants. In this study, we used peptidogenomic methods that integrated mass spectrometry (MS) peptidomics and a six-frame translation database to extensively identify NCPs in grape. In total, 188 and 2021 non-redundant peptides from the Arabidopsis thaliana and Vitis vinifera L. protein database at Ensembl/URGI and an individualized peptidogenomic database were identified. Unlike conventional peptides, these NCPs derived mainly from intergenic, intronic, upstream ORF, 5'UTR, 3'UTR, and downstream ORF regions. These results show that unannotated regions are translated more broadly than we thought. We also found that most NCPs were derived from regions related to phenotypic variations, LTR retrotransposons, and domestication selection, indicating that the NCPs have an important function in complex biological processes. We also found that the NCPs were developmentally specific and had transient and specific functions in grape berry development. In summary, our study is the first to extensively identify NCPs in grape. It demonstrated that there was a large amount of translation in the genome. These results lay a foundation for studying the functions of NCPs and also provide a reference for the discovery of new functional genes in grape.

10.
Antioxidants (Basel) ; 10(9)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34573020

RESUMEN

MYB transcription factors are widely present in plants and play significant roles in abiotic stresses. However, most MYB genes have not been identified in plants and their functions in abiotic stresses are still unknown. In this study, one MYB gene, designated as PtrMYB3, was cloned from trifoliate orange (Poncirus trifoliata (L.) Raf.), and its function in salt tolerance was investigated. PtrMYB3 contains a conserved R2R3-MYB domain, which is the typical property of R2R3-MYB subfamily proteins. Expression profiling under abiotic stresses indicated that PtrMYB3 could be induced by salt, dehydration and cold stresses. PtrMYB3 was found to be localized to the nucleus and possessed transactivation activity. Overexpression of PtrMYB3 by genetic transformation in tobacco impaired its salt tolerance, whereas silencing of PtrMYB3 by VIGS (virus-induced gene silencing) in trifoliate orange conferred significantly enhanced salt tolerance, indicating that PtrMYB3 negatively regulates salt tolerance. Furthermore, a peroxidase gene (PtrPOD) was found to be greatly upregulated in PtrMYB3-silenced trifoliate orange, and a dual LUC (luciferase) assay confirmed that PtrMYB3 could suppress the expression of PtrPOD. The hydrogen peroxide (H2O2) accumulation in PtrMYB3 transgenic tobacco plants after salt stress was higher than the wild type (WT), further confirming that overexpression of PtrMYB3 inhibited PtrPOD-mediated H2O2 scavenging. Taken together, these results demonstrate that PtrMYB3 negatively regulates salt tolerance, at least in part, due to the excess accumulation of H2O2.

11.
Plant Physiol Biochem ; 164: 195-204, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34004557

RESUMEN

Pentatricopeptide repeat (PPR) proteins play important roles in plant growth and development. However, little is known about their functions in the leaf morphogenesis of Jingxiu grape (Vitis vinifera L.). Here, we explored the function of VvPPR1, which encodes a DYW-type PPR protein in grape. We showed that VvPPR1 is involved in the regulation of leaf rolling, anthocyanin accumulation, and trichome formation in Arabidopsis thaliana. Analysis of structural characteristics showed that VvPPR1 is a DYW-type PPR gene in the PLS subfamily consisting of 15 PPR motifs. The N-terminal had a targeted chloroplast site, and the C-terminal had a DYW domain. Quantitative PCR analysis revealed that the expression level of VvPPR1 was highest in grape leaves. Subcellular localization revealed that VvPPR1 is localized in the cytoplasm and chloroplast. VvPPR1-overexpressing plants had rolled leaves, high degrees of anthocyanin accumulation, and longer trichomes. The expression levels of genes related to these phenotypes were either significantly up-regulated or down-regulated. These results demonstrate that VvPPR1 is involved in leaf rolling, anthocyanin accumulation, and trichome formation in Arabidopsis; more generally, our findings indicate that VvPPR1 could be a target for improving the cultivation of horticultural crops.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Vitis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Edición de ARN , Vitis/genética , Vitis/metabolismo
12.
Hortic Res ; 7(1): 88, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528700

RESUMEN

Polyploid plants often exhibit enhanced stress tolerance relative to their diploid counterparts, but the physiological and molecular mechanisms of this enhanced stress tolerance remain largely unknown. In this study, we showed that autotetraploid trifoliate orange (Poncirus trifoliata (L.) Raf.) exhibited enhanced salt tolerance in comparison with diploid progenitors. Global transcriptome profiling of diploid and tetraploid plants with or without salt stress by RNA-seq revealed that the autotetraploids displayed specific enrichment of differentially expressed genes. Interestingly, the leaves and roots of tetraploids exhibited different expression patterns of a variety of upregulated genes. Genes related to plant hormone signal transduction were enriched in tetraploid leaves, whereas those associated with starch and sucrose metabolism and proline biosynthesis were enriched in roots. In addition, genes encoding different antioxidant enzymes were upregulated in the leaves (POD) and roots (APX) of tetraploids under salt stress. Consistently, the tetraploids accumulated higher levels of soluble sugars and proline but less ROS under salt stress compared to the diploids. Moreover, several genes encoding transcription factors were induced specifically or to higher levels in the tetraploids under salt stress. Collectively, this study demonstrates that the activation of various multifaceted defense systems in leaves and roots contributes to the enhanced salt tolerance of autotetraploids.

13.
Tree Physiol ; 39(12): 2045-2054, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31330032

RESUMEN

The basic helix-loop-helix (bHLH) family of transcription factors (TFs) plays a crucial role in regulating plant response to abiotic stress by targeting a large spectrum of stress-responsive genes. However, the physiological mechanisms underlying the TF-mediated stress response are still poorly understood for most of the bHLH genes. In this study, transgenic pummelo (Citrus grandis) plants overexpressing PtrbHLH, a TF previously identified from Poncirus trifoliata, were generated via Agrobacterium-mediated transformation. In comparison with the wild-type plants, the transgenic lines exhibited significantly lower electrolyte leakage and malondialdehyde content after cold treatment, thereby resulting in a more tolerant phenotype. Meanwhile, the transgenic lines accumulated dramatically lower reactive oxygen species (ROS) levels, consistent with elevated activity and expression levels of antioxidant enzymes (genes), including catalase (CAT), peroxidase and superoxide dismutase. In addition, PtrbHLH was shown to specifically bind to and activate the promoter of PtrCAT gene. Taken together, these results demonstrated that overexpression of PtrbHLH leads to enhanced cold tolerance in transgenic pummelo, which may be due, at least partly, to modulation of ROS levels by regulating the CAT gene.


Asunto(s)
Citrus , Poncirus , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno , Proteínas de Plantas , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno , Estrés Fisiológico
14.
Plant Biotechnol J ; 17(7): 1394-1407, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30578709

RESUMEN

Tetraploids have been reported to exhibit increased stress tolerance, but the underlying molecular and physiological mechanisms remain poorly understood. In this study, autotetraploid plants were identified by screening natural seedlings of trifoliate orange (Poncirus trifoliata). The tetraploids exhibited different morphology and displayed significantly enhanced drought and dehydration tolerance in comparison with the diploid progenitor. Transcriptome analysis indicated that a number of stress-responsive genes and pathways were differentially influenced and enriched in the tetraploids, in particular those coding for enzymes related to antioxidant process and sugar metabolism. Transcript levels and activities of antioxidant enzymes (peroxidase and superoxide dismutase) and sucrose-hydrolysing enzyme (vacuolar invertase) were increased in the tetraploids upon exposure to the drought, concomitant with greater levels of glucose but lower level of reactive oxygen species (ROS). These data indicate that the tetraploids might undergo extensive transcriptome reprogramming of genes involved in ROS scavenging and sugar metabolism, which contributes, synergistically or independently, to the enhanced stress tolerance of the tetraploid. Our results reveal that the tetraploids take priority over the diploid for stress tolerance by maintaining a more robust system of ROS detoxification and osmotic adjustment via elevating antioxidant capacity and sugar accumulation in comparison with the diploid counterpart.


Asunto(s)
Sequías , Poncirus/fisiología , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Azúcares/metabolismo , Tetraploidía , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...