Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(6): 345, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802617

RESUMEN

Carbon dots (CDs) derived crosslinked covalent organic nanomaterials (CONs) possessing high specific surface area and abundant surface functional groups are considered to be potential candidates for multimodal chromatographic separations. Typically, the synthesis of CDs and CONs requires harsh reaction conditions and toxic organic solvents, hence, the pursuit of facile and mild preparation strategies is the goal of researchers. In this work, 3-aminopropyltriethoxysilane and D-glucose were used as nitrogen and carbon sources, respectively, to prepare amino-CDs (AmCDs) by rapid low-temperature polymerization rather than the common high-temperature and high-pressure reaction. Then, surface functionalization of the aminated silica gel was carried out in a deep eutectic solvent by using hydrophilic AmCDs and 1,3,5-triformylbenzene (TFB) as the functional monomers. Consequently, a novel N-rich CDs derived CON surface-functionalized silica gel (AmCDs-CON@SiO2) was obtained under mild reaction conditions. The combination of AmCDs and TFB created an ideal CON based chromatographic stationary phase. The incorporation of TFB not only contributed to the successful construction of a crosslinked CON, but also enhanced the interaction forces. The developed AmCDs-CON@SiO2 has a great potential for versatile applications in liquid chromatography. This study proposes a simple stationary phase preparation strategy by the surface modification of silica gel with CDs-based CON. Moreover, this study verified the application potential of CDs derived CON in chromatographic separation. This not only promotes the development of CDs in the field of liquid chromatographic stationary phase, but also provides some reference value for the wide application of cross-linked CON.

2.
Mikrochim Acta ; 191(1): 35, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38108891

RESUMEN

The solvothermal synthesis of covalent organic framework (COF) modified silica gel usually requires the use of harmful organic solvents, tedious steps, and harsh reaction conditions. In pursuit of green chemistry, a new strategy for the facile preparation of COF@SiO2 composite material was realized in this work by using a low-toxicity and low-cost deep eutectic solvent as the reaction medium. Additionally, a flexible polyacrylic acid (PAA) was introduced for the purpose of improving the hydrophilic selectivity and separation efficiency of COF@SiO2. Based on the above ideas, a novel PAA/COF@SiO2 composite was successfully developed as a liquid chromatographic packing material. Performance evaluation of the slurry-packed PAA/COF@SiO2 column showed that diverse types of analytes were effectively separated, and the retention behavior of polar nucleosides showed a U-shaped trend, indicating mixed-mode of hydrophobic/hydrophilic retention mechanisms. Thermodynamic studies revealed that the separation mechanism was largely independent of temperature. This work verifies the feasibility of synthesizing polymer/COF@SiO2 composite material in the deep eutectic solvent. This strategy provides a theoretical reference for the green and facile preparation of COF@SiO2 as an efficient liquid chromatographic stationary phase.

3.
Anal Chim Acta ; 1283: 341992, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37977797

RESUMEN

BACKGROUND: Due to their large surface area and distinctive adsorption affinity, covalent organic frameworks (COFs) appear to be good candidates as liquid chromatographic separation materials with good application prospect. The development of COF materials in chromatographic science is currently in an exploratory stage. Especially, the practicability of COF@silica composite materials as liquid chromatographic stationary phases needs further exploration. Reasonably integrating a functional component such as ionic liquid (IL) into the COF@silica composite materials may provide customized functionality to achieve the purpose of synthesizing multi-functional COF based stationary phases. RESULTS: In this study, an IL modified COF bonded silica composite material (IL-COF@SiO2) was successfully synthesized by using an environmentally friendly deep eutectic solvent as the reaction medium instead of the frequently-used organic solvent. The synthesized IL-COF@SiO2 composite material combines the excellent separation ability of COF and the excellent mass transfer function of spherical porous silica microsphere, and meanwhile, the introduction of IL endows COF@SiO2 with preferable separation performance. The slurry-packed IL-COF@SiO2 liquid chromatographic column could be applied to effectively separate hydrophobic and hydrophilic compounds with preferable separation selectivity and high column efficiency. By investigating the retention behavior and influencing factors, a mixed-mode retention mechanism was found. Multiple interaction forces endow the IL-COF@SiO2 with a hydrophilic-hydrophobic balance performance, demonstrating a good application prospect as a versatile liquid chromatographic separation material. SIGNIFICANCE: In this study, a new strategy is proposed for greenly synthesizing a novel IL-COF@SiO2 composite material under mild conditions, which expands the potential application of COF materials in chromatographic science. One particular point to note is that the reaction medium in each step of the preparation process is low toxic and degradable deep eutectic solvent, which conforms to the concept of green chemistry.

4.
Anal Chim Acta ; 1276: 341635, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37573114

RESUMEN

The composites of covalent organic frameworks (COFs) and silica gel have been considered to be promising chromatographic separation materials due to the distinct advantages such as large specific surface area, good mechanical strength and high porosity. In the present study, a novel imine-linked COF@silica composite was prepared by in-situ growth of 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) and 2,5-dihydroxyterephthalaldehyde (DHTA) monomers on the surface of aminated silica gel (SiO2-NH2). The successful surface-modification of TAPT-DHTA-COF distinctly enhanced the separation selectivity and efficiency of SiO2-NH2. Multiple types of analyte-stationary phase interactions contributed to the selective retention of structurally similar analytes. The designed TAPT-DHTA-COF@SiO2 was observed to effectively separate hydrophobic phenyl ketones, phthalate esters and steroid hormones. Moreover, the polar amino and hydroxyl groups of TAPT-DHTA-COF facilitated the selective determination of hydrophilic nucleosides/bases. The kinetic performance and thermodynamic behavior of TAPT-DHTA-COF@SiO2 column were particularly explored. It was found that column efficiency was mainly affected by the mass transfer resistance, and the retention of nucleosides/bases on the TAPT-DHTA-COF@SiO2 column was temperature dependent. The developed versatile TAPT-DHTA-COF@SiO2 column was finally applied for detecting environmental hormones as well as water-soluble nicotinamide in real samples. In summary, the potential application of TAPT-DHTA-COF@SiO2 composite material for liquid chromatographic separations was first explored and verified. The TAPT-DHTA-COF@SiO2 was proved to be a promising chromatographic separation material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...