Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
CNS Neurosci Ther ; 30(2): e14345, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37424152

RESUMEN

OBJECTIVE: Cognitive deficit is common in patients with temporal lobe epilepsy (TLE). Here, we aimed to investigate the modular architecture of functional networks associated with distinct cognitive states in TLE patients together with the role of the thalamus in modular networks. METHODS: Resting-state functional magnetic resonance imaging scans were acquired from 53 TLE patients and 37 matched healthy controls. All patients received the Montreal Cognitive Assessment test and accordingly were divided into TLE patients with normal cognition (TLE-CN, n = 35) and TLE patients with cognitive impairment (TLE-CI, n = 18) groups. The modular properties of functional networks were calculated and compared including global modularity Q, modular segregation index, intramodular connections, and intermodular connections. Thalamic subdivisions corresponding to the modular networks were generated by applying a 'winner-take-all' strategy before analyzing the modular properties (participation coefficient and within-module degree z-score) of each thalamic subdivision to assess the contribution of the thalamus to modular functional networks. Relationships between network properties and cognitive performance were then further explored. RESULTS: Both TLE-CN and TLE-CI patients showed lower global modularity, as well as lower modular segregation index values for the ventral attention network and the default mode network. However, different patterns of intramodular and intermodular connections existed for different cognitive states. In addition, both TLE-CN and TLE-CI patients exhibited anomalous modular properties of functional thalamic subdivisions, with TLE-CI patients presenting a broader range of abnormalities. Cognitive performance in TLE-CI patients was not related to the modular properties of functional network but rather to the modular properties of functional thalamic subdivisions. CONCLUSIONS: The thalamus plays a prominent role in modular networks and potentially represents a key neural mechanism underlying cognitive impairment in TLE.


Asunto(s)
Trastornos del Conocimiento , Disfunción Cognitiva , Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Tálamo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Disfunción Cognitiva/patología , Trastornos del Conocimiento/patología
2.
Eur J Neurol ; 29(1): 277-285, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34546615

RESUMEN

BACKGROUND AND PURPOSE: Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is characterized by a range of cognitive impairments, especially in executive function. Our study aims to identify the abnormal regional homogeneity (ReHo) in anti-NMDAR encephalitis patients and its relationship with the executive function. METHODS: Forty patients and 42 healthy volunteers undertook an Attention Network Test and a resting-state functional magnetic resonance imaging scan. ReHo analysis was performed to investigate the neuronal activity synchronization in all subjects. Based on ReHo analysis, a multivariate pattern analysis (MVPA) was carried out to identify the brain regions that differed the most between the two groups. RESULTS: Compared to controls, the patients had higher executive control scores (p < 0.05). The patients presented reduced ReHo values in the bilateral posterior cerebellar lobe, anterior cerebellar lobe, midbrain, bilateral caudate nucleus, right superior frontal gyrus, right middle temporal gyrus, bilateral inferior parietal lobule and the left middle frontal gyrus. The ReHo values of the bilateral inferior parietal lobule in patients were found to be negatively associated with executive control scores. The classification of patients and controls using MVPA had an accuracy of 76.83%, a sensitivity of 82.50%, a specificity of 71.43% and the area under the curve was 0.83. CONCLUSIONS: Our study provides evidence of abnormal cerebral function in anti-NMDAR encephalitis patients, which may contribute to unveiling the neuropathological mechanisms of anti-NMDAR encephalitis and their influences on executive dysfunction. The MVPA classifier, based on ReHo, is helpful in identifying anti-NMDAR encephalitis patients from healthy controls.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Disfunción Cognitiva , Encefalitis Antirreceptor N-Metil-D-Aspartato/complicaciones , Encefalitis Antirreceptor N-Metil-D-Aspartato/diagnóstico por imagen , Encéfalo/patología , Mapeo Encefálico/métodos , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/etiología , Humanos , Imagen por Resonancia Magnética/métodos
3.
J Neurosci Res ; 99(10): 2688-2705, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34269468

RESUMEN

The brain network alterations associated with temporal lobe epilepsy (TLE) progression are still unclear. The purpose of this study was to investigate altered patterns of static and dynamic functional network connectivity (sFNC and dFNC) in TLE with different durations of disease. In this study, 19 TLE patients with a disease duration of ≤5 years (TLE-SD), 24 TLE patients with a disease duration of >5 years (TLE-LD), and 21 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging and attention network test. We used group independent component analysis to determine the target resting-state networks. Sliding window correlation and k-means clustering analysis methods were used to obtain different dFNC states, temporal properties, and temporal variability. We then compared sFNC and dFNC between groups and found that compared with HCs, TLE-SD patients had increased sFNC between the dorsal attention network and sensorimotor network/visual network (VN), but decreased sFNC between the inferior-posterior default mode network and VN. In the strongly connected dFNC state, TLE-SD patients spent more time, had greater mean dwell time, and showed greater inconsistent abnormal network connectivity. There was a significant negative correlation between the temporal variability of auditory network- left fronto-parietal network connectivity and orienting effect. No significant differences in sFNC and dFNC were detected between TLE-LD and HC groups. These findings suggest that the damage and functional brain network abnormalities gradually occur in TLE patients after the onset of epilepsy, which might lead to functional network reorganization and compensatory remodeling as the disease progresses.


Asunto(s)
Atención/fisiología , Encéfalo/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Adulto , Encéfalo/fisiopatología , Estudios Transversales , Epilepsia del Lóbulo Temporal/fisiopatología , Femenino , Humanos , Masculino , Red Nerviosa/fisiopatología , Factores de Tiempo , Adulto Joven
4.
Front Neurosci ; 15: 820641, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126048

RESUMEN

OBJECTIVE: Temporal lobe epilepsy (TLE) can be conceptualized as a network disease. However, the network characteristics in lateralization remain controversial. METHODS: In this study, resting-state functional MRI scans were acquired from 53 TLE patients [22 with left-side TLE (LTLE) and 31 with right-side TLE (RTLE)] and 37 matched healthy controls. We focused on the characteristics of static and dynamic functional connectivity, including static connectivity patterns and topological properties, as well as temporal properties of the dynamic connectivity state and the variability of the dynamic connectivity and network topological organization. Correlation analyses were conducted between abnormal static and dynamic properties and cognitive performances. RESULTS: The static functional connectivity analysis presented a significantly decreased cortical-cortical connectivity pattern and increased subcortical-cortical connectivity pattern in RTLE. The global-level network in RTLE showed a significant decrease in global efficiency. The dynamic functional connectivity analysis revealed that RTLE patients exhibited aberrant connectivity states, as well as increased variability in the subcortical-cortical connectivity. The global-level network in RTLE revealed increased variance in global efficiency and local efficiency. The static or dynamic functional connectivity in LTLE did not show any significant abnormalities. The altered dynamic properties were associated with worsening cognitive performance in language and conceptual thinking by the TLE patients. CONCLUSION: Our findings demonstrated the presence of abnormalities in the static and dynamic functional connectivity of TLE patients. RTLE patients exhibited more pronounced aberrant connectivity patterns and topological properties, which might represent a mechanism for reconfiguration of brain networks in RTLE patients. These observations extended our understanding of the pathophysiological network mechanisms of TLE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...