Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Sensors (Basel) ; 23(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37765809

RESUMEN

The Silk Road Economic Belt and the 21st Century Maritime Silk Road Initiative (BRI) proposed in 2013 by China has greatly accelerated the social and economic development of the countries along the Belt and Road (B&R) region. However, the international community has questioned its impact on the ecological environment and a comprehensive assessment of ecosystem quality changes is lacking. Therefore, this study proposes an objective and automatic method to assess ecosystem quality and analyzes the spatiotemporal changes in the B&R region. First, an ecosystem quality index (EQI) is established by integrating the vegetation status derived from three remote sensing ecological parameters including the leaf area index, fractional vegetation cover and gross primary productivity. Then, the EQI values are automatically categorized into five ecosystem quality levels including excellent, good, moderate, low and poor to illustrate their spatiotemporal changes from the years 2016 to 2020. The results indicate that the spatial distributions of the EQIs across the B&R region exhibited similar patterns in the years 2016 and 2020. The regions with excellent levels accounted for the lowest proportion of less than 12%, while regions with moderate, low and poor levels accounted for more than 68% of the study area. Moreover, based on the EQI pattern analysis between the years 2016 and 2020, the regions with no significant EQI change accounted for up to 99.33% and approximately 0.45% experienced a significantly decreased EQI. Therefore, this study indicates that the ecosystem quality of the B&R region was relatively poor and experienced no significant change in the five years after the implementation of the "Vision and Action to Promote the Joint Construction of the Silk Road Economic Belt and the 21st Century Maritime Silk Road". This study can provide useful information for decision support on the future ecological environment management and sustainable development of the B&R region.


Asunto(s)
Ecosistema , Ambiente , China , Hojas de la Planta
3.
Sensors (Basel) ; 23(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37766063

RESUMEN

The scope of this research lies in the combination of pre-trained Convolutional Neural Networks (CNNs) and Quantum Convolutional Neural Networks (QCNN) in application to Remote Sensing Image Scene Classification(RSISC). Deep learning (RL) is improving by leaps and bounds pretrained CNNs in Remote Sensing Image (RSI) analysis, and pre-trained CNNs have shown remarkable performance in remote sensing image scene classification (RSISC). Nonetheless, CNNs training require massive, annotated data as samples. When labeled samples are not sufficient, the most common solution is using pre-trained CNNs with a great deal of natural image datasets (e.g., ImageNet). However, these pre-trained CNNs require a large quantity of labelled data for training, which is often not feasible in RSISC, especially when the target RSIs have different imaging mechanisms from RGB natural images. In this paper, we proposed an improved hybrid classical-quantum transfer learning CNNs composed of classical and quantum elements to classify open-source RSI dataset. The classical part of the model is made up of a ResNet network which extracts useful features from RSI datasets. To further refine the network performance, a tensor quantum circuit is subsequently employed by tuning parameters on near-term quantum processors. We tested our models on the open-source RSI dataset. In our comparative study, we have concluded that the hybrid classical-quantum transferring CNN has achieved better performance than other pre-trained CNNs based RSISC methods with small training samples. Moreover, it has been proven that the proposed algorithm improves the classification accuracy while greatly decreasing the amount of model parameters and the sum of training data.

4.
Sci Data ; 10(1): 424, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393299

RESUMEN

High-quality ground observation networks are an important basis for scientific research. Here, an automatic soil observation network for high-resolution satellite applications in China (SONTE-China) was established to measure both pixel- and multilayer-based soil moisture and temperature. SONTE-China is distributed across 17 field observation stations with a variety of ecosystems, covering both dry and wet zones. In this paper, the average root mean squared error (RMSE) of station-based soil moisture for well-characterized SONTE-China sites is 0.027 m3/m3 (0.014~0.057 m3/m3) following calibration for specific soil properties. The temporal and spatial characteristics of the observed soil moisture and temperature in SONTE-China conform to the geographical location, seasonality and rainfall of each station. The time series Sentinel-1 C-band radar signal and soil moisture show strong correlations, and the RMSE of the estimated soil moisture from radar data was lower than 0.05 m3/m3 for the Guyuan and Minqin stations. SONTE-China is a soil moisture retrieval algorithm that can validate soil moisture products and provide basic data for weather forecasting, flood forecasting, agricultural drought monitoring and water resource management.

5.
Sensors (Basel) ; 22(21)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36366220

RESUMEN

Remote sensing images with high spatial and temporal resolution in snow-covered areas are important for forecasting avalanches and studying the local weather. However, it is difficult to obtain images with high spatial and temporal resolution by a single sensor due to the limitations of technology and atmospheric conditions. The enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) can fill in the time-series gap of remote sensing images, and it is widely used in spatiotemporal fusion. However, this method cannot accurately predict the change when there is a change in surface types. For example, a snow-covered surface will be revealed as the snow melts, or the surface will be covered with snow as snow falls. These sudden changes in surface type may not be predicted by this method. Thus, this study develops an improved spatiotemporal method ESTARFM (iESTARFM) for the snow-covered mountain areas in Nepal by introducing NDSI and DEM information to simulate the snow-covered change to improve the accuracy of selecting similar pixels. Firstly, the change in snow cover is simulated according to NDSI and DEM. Then, similar pixels are selected according to the change in snow cover. Finally, NDSI is added to calculate the weights to predict the pixels at the target time. Experimental results show that iESTARFM can reduce the bright abnormal patches in the land area compared to ESTARFM. For spectral accuracy, iESTARFM performs better than ESTARFM with the root mean square error (RMSE) being reduced by 0.017, the correlation coefficient (r) being increased by 0.013, and the Structural Similarity Index Measure (SSIM) being increased by 0.013. For spatial accuracy, iESTARFM can generate clearer textures, with Robert's edge (Edge) being reduced by 0.026. These results indicate that iESTARFM can obtain higher prediction results and maintain more spatial details, which can be used to generate dense time series images for snow-covered mountain areas.

6.
Sensors (Basel) ; 17(7)2017 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-28698464

RESUMEN

Leaf area index (LAI) is an important vegetation parameter that characterizes leaf density and canopy structure, and plays an important role in global change study, land surface process simulation and agriculture monitoring. The wide field view (WFV) sensor on board the Chinese GF-1 satellite can acquire multi-spectral data with decametric spatial resolution, high temporal resolution and wide coverage, which are valuable data sources for dynamic monitoring of LAI. Therefore, an automatic LAI estimation algorithm for GF-1 WFV data was developed based on the radiative transfer model and LAI estimation accuracy of the developed algorithm was assessed in an agriculture region with maize as the dominated crop type. The radiative transfer model was firstly used to simulate the physical relationship between canopy reflectance and LAI under different soil and vegetation conditions, and then the training sample dataset was formed. Then, neural networks (NNs) were used to develop the LAI estimation algorithm using the training sample dataset. Green, red and near-infrared band reflectances of GF-1 WFV data were used as the input variables of the NNs, as well as the corresponding LAI was the output variable. The validation results using field LAI measurements in the agriculture region indicated that the LAI estimation algorithm could achieve satisfactory results (such as R² = 0.818, RMSE = 0.50). In addition, the developed LAI estimation algorithm had potential to operationally generate LAI datasets using GF-1 WFV land surface reflectance data, which could provide high spatial and temporal resolution LAI data for agriculture, ecosystem and environmental management researches.


Asunto(s)
Agricultura , Algoritmos , Ecosistema , Hojas de la Planta , Suelo
7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(8): 2203-7, 2014 Aug.
Artículo en Chino | MEDLINE | ID: mdl-25474962

RESUMEN

The present paper performed the evaluation of four dark-object subtraction(DOS) atmospheric correction methods based on 2012 Inner Mongolia experimental data The authors analyzed the impacts of key parameters of four DOS methods when they were applied to ZY-3 CCD data The results showed that (1) All four DOS methods have significant atmospheric correction effect at band 1, 2 and 3. But as for band 4, the atmospheric correction effect of DOS4 is the best while DOS2 is the worst; both DOS1 and DOS3 has no obvious atmospheric correction effect. (2) The relative error (RE) of DOS1 atmospheric correction method is larger than 10% at four bands; The atmospheric correction effect of DOS2 works the best at band 1(AE (absolute error)=0.0019 and RE=4.32%) and the worst error appears at band 4(AE=0.0464 and RE=19.12%); The RE of DOS3 is about 10% for all bands. (3) The AE of atmospheric correction results for DOS4 method is less than 0. 02 and the RE is less than 10% for all bands. Therefore, the DOS4 method provides the best accuracy of atmospheric correction results for ZY-3 image.

8.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(3): 781-5, 2012 Mar.
Artículo en Chino | MEDLINE | ID: mdl-22582652

RESUMEN

Remote sensing application requirements are the starting point for design of payload on board earth observation satellite. The generalization, standardization and serialization of payload are the future development trend for payload design. In the present paper, based on the analysis of remote sensing application requirements, the spatial resolution standardization of satellite remote sensing payload, which is the main concerned indicator, was investigated. The design standards of national payload spatial resolution of earth observation satellite are presented, which are important to the promotion of satellite payload production and saving in design cost.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...