Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 152: 106435, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38340479

RESUMEN

Advanced composites with superior wave attenuation or vibration isolation capacity are in high demand in engineering practice. In this study, we develop the hybrid dynamic shear-lag model with Bloch's theorem to investigate the hybrid effect of reinforcement on wave attenuation in bioinspired staggered composites. We present for the first time the relationship between macroscopic wave filtering and hybridization of building blocks in staggered composites. Viscoelasticity was taken into account for both reinforcement and matrix to reflect the damping effect on wave transmission. Our findings indicate that reinforcement hybridization significantly enhances wave attenuation performance through two critical parameters: the linear stiffness and linear density of reinforcements. For purely elastic constituents, reinforcement hybridization consistently improves wave attenuation by reducing the initial frequency of the first bandgap and broadening it. For viscoelastic constituents, increasing the heterogeneity of reinforcements can benefit wave attenuation, particularly in ultralow frequency regimes, due to the strengthening of the damping effect. Our case study demonstrates that controlling the difference in linear density can result in up to a 59 % reduction in energy transmission. Our analysis suggests that hybridizing reinforcements could provide a new approach to designing and synthesizing advanced composites with exceptional wave attenuation performance.


Asunto(s)
Ingeniería , Vibración
2.
Nat Commun ; 15(1): 1717, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38403631

RESUMEN

Theoretical predictions of the ideal strength of materials range from E/30 to E/10 (E is Young's modulus). However, despite intense interest over the last decade, the value of the ideal strength achievable through experiments for metals remains a mystery. This study showcases the remarkable spall strength of Cu50Zr50 amorphous alloy that exceeds the E/10 limit at strain rates greater than 107 s-1 through laser-induced shock experiments. The material exhibits a spall strength of 11.5 GPa, approximately E/6 or 1/13 of its P-wave modulus, which sets a record for the elastic limit of metals. Electron microscopy and large-scale molecular dynamics simulations reveal that the primary failure mechanism at extreme strain rates is void nucleation and growth, rather than shear-banding. The rate dependence of material strength is explained by a void kinetic model controlled by surface energy. These findings help advance our understanding on the mechanical behavior of amorphous alloys under extreme strain rates.

3.
Proc Natl Acad Sci U S A ; 121(5): e2309384121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38252835

RESUMEN

High-quality specimen preparation plays a crucial role in cryo-electron microscopy (cryo-EM) structural analysis. In this study, we have developed a reliable and convenient technique called the graphene sandwich method for preparing cryo-EM specimens. This method involves using two layers of graphene films that enclose macromolecules on both sides, allowing for an appropriate ice thickness for cryo-EM analysis. The graphene sandwich helps to mitigate beam-induced charging effect and reduce particle motion compared to specimens prepared using the traditional method with graphene support on only one side, therefore improving the cryo-EM data quality. These advancements may open new opportunities to expand the use of graphene in the field of biological electron microscopy.


Asunto(s)
Grafito , Microscopía por Crioelectrón , Exactitud de los Datos , Movimiento (Física)
4.
Nat Commun ; 14(1): 5410, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670012

RESUMEN

Ice-templating technology holds great potential to construct industrial porous materials from nanometers to the macroscopic scale for tailoring thermal, electronic, or acoustic transport. Herein, we describe a general ice-templating technology through freezing the material on a rotating cryogenic drum surface, crushing it, and then re-casting the nanofiber slurry. Through decoupling the ice nucleation and growth processes, we achieved the columnar-equiaxed crystal transition in the freezing procedure. The highly random stacking and integrating of equiaxed ice crystals can organize nanofibers into thousands of repeating microscale units with a tortuous channel topology. Owing to the spatially well-defined isotropic structure, the obtained Al2O3·SiO2 nanofiber aerogels exhibit ultralow thermal conductivity, superelasticity, good damage tolerance, and fatigue resistance. These features, together with their natural stability up to 1200 °C, make them highly robust for thermal insulation under extreme thermomechanical environments. Cascading thermal runaway propagation in a high-capacity lithium-ion battery module consisting of LiNi0.8Co0.1Mn0.1O2 cathode, with ultrahigh thermal shock power of 215 kW, can be completely prevented by a thin nanofiber aerogel layer. These findings not only establish a general production route for nanomaterial assemblies that is conventionally challenging, but also demonstrate a high-energy-density battery module configuration with a high safety standard that is critical for practical applications.

5.
Nano Lett ; 23(16): 7599-7606, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37531458

RESUMEN

Zero-dimensional organic-inorganic metal halide hybrids provide ideal bulk-crystal platforms for exploring the pressure engineering of electron-phonon coupling (EPC) and self-trapped exciton (STE) emission at the molecular level. However, the low stiffness of inorganic clusters hinders the reversible tuning of these physical properties. Herein, we designed a Sb3+-doped metal halide with a high emission yield (89.4%) and high bulk modulus (35 GPa) that enables reversible and enhanced STE emission (20-fold) under pressure. The high lattice rigidity originates from the corner-shared cage-structured inorganic tetramers and ring-shaped organic ligands. Further, we reveal that the pressure-enhanced emission regime below 4.5 GPa is owing to the lattice hardening and preferably EPC strength reducing, while the pressure-insensitive emission regime within 4.5-8.5 GPa results from the enhanced intercluster Coulombic attraction force that resists intracluster compression. These results provide insights into the structure-property relation and molecular engineering of zero-dimensional metal halides toward wide-band and pressure-sensitive light sources.

6.
Nat Commun ; 14(1): 3199, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268632

RESUMEN

Bilayer graphene (BLG) is intriguing for its unique properties and potential applications in electronics, photonics, and mechanics. However, the chemical vapor deposition synthesis of large-area high-quality bilayer graphene on Cu is suffering from a low growth rate and limited bilayer coverage. Herein, we demonstrate the fast synthesis of meter-sized bilayer graphene film on commercial polycrystalline Cu foils by introducing trace CO2 during high-temperature growth. Continuous bilayer graphene with a high ratio of AB-stacking structure can be obtained within 20 min, which exhibits enhanced mechanical strength, uniform transmittance, and low sheet resistance in large area. Moreover, 96 and 100% AB-stacking structures were achieved in bilayer graphene grown on single-crystal Cu(111) foil and ultraflat single-crystal Cu(111)/sapphire substrates, respectively. The AB-stacking bilayer graphene exhibits tunable bandgap and performs well in photodetection. This work provides important insights into the growth mechanism and the mass production of large-area high-quality BLG on Cu.

7.
Nano Lett ; 23(8): 3493-3500, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37023469

RESUMEN

Indium selenide (InSe) exhibits high lattice compressibility and an extraordinary capability of tailoring the optical band gap under pressure beyond other 2D materials. Herein, by applying hydrostatic pressure via a diamond anvil cell, we revealed an anisotropic deformation dynamic and efficient manipulation of near-infrared light emission in thin-layered InSe strongly correlated to layer numbers (N = 5-30). As N > 20, the InSe lattice is compressed in all directions, and the intralayer compression leads to widening of the band gap, resulting in an emission blue shift (∼120 meV at 1.5 GPa). In contrast, as N ≤ 15, an efficient emission red shift is observed from band gap shrinkage (rate of 100 meV GPa-1), which is attributed to the predominant uniaxial interlayer compression because of the high strain resistance along the InSe-diamond interface. These findings advance the understanding of pressure-induced lattice deformation and optical transition evolution in InSe and could be applied to other 2D materials.

8.
Nat Methods ; 20(1): 123-130, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36522503

RESUMEN

Cryo-electron microscopy (cryo-EM) visualizes the atomic structure of macromolecules that are embedded in vitrified thin ice at their close-to-native state. However, the homogeneity of ice thickness, a key factor to ensure high image quality, is poorly controlled during specimen preparation and has become one of the main challenges for high-resolution cryo-EM. Here we found that the uniformity of thin ice relies on the surface flatness of the supporting film, and developed a method to use ultraflat graphene (UFG) as the support for cryo-EM specimen preparation to achieve better control of vitreous ice thickness. We show that the uniform thin ice on UFG improves the image quality of vitrified specimens. Using such a method we successfully determined the three-dimensional structures of hemoglobin (64 kDa), α-fetoprotein (67 kDa) with no symmetry, and streptavidin (52 kDa) at a resolution of 3.5 Å, 2.6 Å and 2.2 Å, respectively. Furthermore, our results demonstrate the potential of UFG for the fields of cryo-electron tomography and structure-based drug discovery.


Asunto(s)
Grafito , Microscopía por Crioelectrón/métodos , Grafito/química , Sustancias Macromoleculares , Tomografía con Microscopio Electrónico
9.
ACS Nano ; 16(7): 10729-10741, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35709373

RESUMEN

Thermal runaway (TR) failures of large-format lithium-ion battery systems related to fires and explosions have become a growing concern. Here, we design a smart ceramic-hydrogel nanocomposite that provides integrated thermal management, cooling, and fire insulation functionalities and enables full-lifecycle security. The glass-ceramic nanobelt sponges exhibit high mechanical flexibility with 80% reversible compressibility and high fatigue resistance, which can firmly couple with the polymer-nanoparticle hydrogels and form thermal-switchable nanocomposites. In the operating mode, the high enthalpy of the nanocomposites enables efficient thermal management, thereby preventing local temperature spikes and overheating under extremely fast charging conditions. In the case of mechanical or thermal abuse, the stored water can be immediately released, leaving behind a highly flexible ceramic matrix with low thermal conductivity (42 mW m-1 K-1 at 200 °C) and high-temperature resistance (up to 1300 °C), thus effectively cooling the TR battery and alleviating the devastating TR propagation. The versatility, self-adaptivity, environmental friendliness, and manufacturing scalability make this material highly attractive for practical safety assurance applications.

10.
Sci Adv ; 8(10): eabm2884, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35263125

RESUMEN

Crystalline-amorphous composite have the potential to achieve high strength and high ductility through manipulation of their microstructures. Here, we fabricate a TiZr-based alloy with micrometer-size equiaxed grains that are made up of three-dimensional bicontinuous crystalline-amorphous nanoarchitectures (3D-BCANs). In situ tension and compression tests reveal that the BCANs exhibit enhanced ductility and strain hardening capability compared to both amorphous and crystalline phases, which impart ultra-high yield strength (~1.80 GPa), ultimate tensile strength (~2.3 GPa), and large uniform ductility (~7.0%) into the TiZr-based alloy. Experiments combined with finite element simulations reveal the synergetic deformation mechanisms; i.e., the amorphous phase imposes extra strain hardening to crystalline domains while crystalline domains prevent the premature shear localization in the amorphous phases. These mechanisms endow our material with an effective strength-ductility-strain hardening combination.

11.
ACS Nano ; 15(10): 16562-16571, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34569229

RESUMEN

Cryo-electron microscopy (cryo-EM) has emerged as a vital tool to reveal the native structure of beam-sensitive biomolecules and materials. Yet high-resolution cryo-EM analysis is still limited by the poorly controlled specimen preparation and urgently demands a robust supporting film material to prepare desirable samples. Here, we developed a bilayer Janus graphene membrane with the top-layer graphene being functionalized to interact with target molecules on the surface, while the bottom layer being kept intact to reinforce its mechanical steadiness. The ultraclean and atomically thin bilayer Janus membrane prepared by our protocol on one hand generates almost no extra noise and on the other hand reduces the specimen motion during cryo-EM imaging, thus allowing the atomic-resolution characterization of surface functional groups. Using such Janus membranes in cryo-EM specimen preparation, we were able to directly image the lithium dendrite and reconstruct macromolecules at near-atomic resolution. Our results demonstrate the bilayer Janus design as a promising supporting material for high-resolution cryo-EM and EM imaging.


Asunto(s)
Grafito , Microscopía por Crioelectrón , Sustancias Macromoleculares , Movimiento (Física) , Manejo de Especímenes
12.
Nano Lett ; 21(10): 4137-4144, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33913710

RESUMEN

Colloidal CdSe nanoplatelets (NPLs) have substantial potential in light-emitting applications because of their quantum-well-like characteristics. The self-trapped state (STS), originating from strong electron-phonon coupling (EPC), is promising in white light luminance because of its broadband emission. However, achieving STS in CdSe NPLs is extremely challenging because of their intrinsic weak EPC nature. Herein, we developed a strong STS emission in the spectral range of 450-600 nm by building superlattice (SL) structures with colloidal CdSe NPLs. We demonstrated that STS is generated via strong coupling of excitons and zone-folded longitudinal acoustic phonons with formation time of ∼450 fs and localization length of ∼0.56 nm. The Huang-Rhys factor, describing the EPC strength in SL structure, is estimated to be ∼19.9, which is much larger than that (∼0.1) of monodispersed CdSe NPLs. Our results provide an in-depth understanding of STS and a platform for generating and manipulating STS by designing SL structures.

13.
Nano Lett ; 20(9): 6798-6806, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32787178

RESUMEN

Graphene grown on Cu by chemical vapor deposition is rough due to the surface roughening of Cu for releasing interfacial thermal stress and/or graphene bending energy. The roughness degrades the electrical conductance and mechanical strength of graphene. Here, by using vicinal Cu(111) and flat Cu(111) as model substrates, we investigated the critical role of original surface topography on the surface deformation of Cu covered by graphene. We demonstrated that terrace steps on vicinal Cu(111) dominate the formation of step bunches (SBs). Atomically flat graphene with roughness down to 0.2 nm was grown on flat Cu(111) films. When SB-induced ripples were avoided, as-grown ultraflat graphene maintained its flat feature after transfer. The ultraflat graphene exhibited extraordinary mechanical properties with Young's modulus ≈ 940 GPa and strength ≈ 117 GPa, comparable to mechanical exfoliated ones. Molecular dynamics simulation revealed the mechanism of softened elastic response and weakened strength of graphene with rippled structures.

14.
Nat Commun ; 11(1): 3732, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32709868

RESUMEN

Advanced ceramic sponge materials with temperature-invariant high compressibility are urgently needed as thermal insulators, energy absorbers, catalyst carriers, and high temperature air filters. However, the application of ceramic sponge materials is severely limited due to their complex preparation process. Here, we present a facile method for large-scale fabrication of highly compressible, temperature resistant SiO2-Al2O3 composite ceramic sponges by blow spinning and subsequent calcination. We successfully produce anisotropic lamellar ceramic sponges with numerous stacked microfiber layers and density as low as 10 mg cm-3. The anisotropic lamellar ceramic sponges exhibit high compression fatigue resistance, strain-independent zero Poisson's ratio, robust fire resistance, temperature-invariant compression resilience from -196 to 1000 °C, and excellent thermal insulation with a thermal conductivity as low as 0.034 W m-1 K-1. In addition, the lamellar structure also endows the ceramic sponges with excellent sound absorption properties, representing a promising alternative to existing thermal insulation and acoustic absorption materials.

15.
Nat Commun ; 11(1): 541, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992713

RESUMEN

The fast development of high-resolution electron microscopy (EM) demands a background-noise-free substrate to support the specimens, where atomically thin graphene membranes can serve as an ideal candidate. Yet the preparation of robust and ultraclean graphene EM grids remains challenging. Here we present a polymer- and transfer-free direct-etching method for batch fabrication of robust ultraclean graphene grids through membrane tension modulation. Loading samples on such graphene grids enables the detection of single metal atoms and atomic-resolution imaging of the iron core of ferritin molecules at both room- and cryo-temperature. The same kind of hydrophilic graphene grid allows the formation of ultrathin vitrified ice layer embedded most protein particles at the graphene-water interface, which facilitates cryo-EM 3D reconstruction of archaea 20S proteasomes at a record high resolution of ~2.36 Å. Our results demonstrate the significant improvements in image quality using the graphene grids and expand the scope of EM imaging.


Asunto(s)
Grafito/química , Microscopía Electrónica/instrumentación , Microscopía Electrónica/métodos , Fenómenos Químicos , Microscopía por Crioelectrón/métodos , Electrones , Diseño de Equipo , Procesamiento de Imagen Asistido por Computador , Membranas , Polímeros , Proteínas
16.
Adv Sci (Weinh) ; 5(12): 1801070, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30581706

RESUMEN

By introducing stretchability and/or deformability to planar electronics, devices can conformably attach to 3D curved surfaces with minimal invasiveness, which is of great interest for next-generation wearables in clinical and biological applications. Here, a feasible route is demonstrated to generate deformable 3D structures as a robust platform to construct electronic systems by utilizing silver nanowires/parylene hybrid films in a way analogous to the art of kirigami. The hybrid films exhibit outstanding electrical conductivity along with decent optical transparency, flexibility, and long-term stability. These merits enable these films to work as electrodes for electrocardiogram recording with comparable accuracy to a commercial counterpart, and to fabricate a 7-GHz monopole antenna with good omni-directionality and a peak gain of 1.35 dBi. More importantly, a general scheme for constructing 3D deformable electronic systems is presented, including unique patterning procedures and rational cut designs inspired by kirigami. As an example, deformable transparent humidity sensors are fabricated to work on elbows and finger joints for sweating monitoring. The strategy demonstrated here for 3D deformable system construction is versatile and holds great promise for future advanced health monitoring at diverse and complex epidermal surfaces.

17.
Acta Biomater ; 74: 270-279, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29723702

RESUMEN

Lightweight and high impact performance composite design is a big challenge for scientists and engineers. Inspired from well-known biological materials, e.g., the bones, spider silk, and claws of mantis shrimp, artificial composites have been synthesized for engineering applications. Presently, the design of ballistic resistant composites mainly emphasizes the utilization of light and high-strength fibers, whereas the contribution from matrix materials receives less attention. However, recent ballistic experiments on fiber-reinforced composites challenge our common sense. The use of matrix with "low-grade" properties enhances effectively the impact performance. In this study, we establish a dynamic shear-lag model to explore the energy dissipation through viscous matrix materials in fiber-reinforced composites and the associations of energy dissipation characteristics with the properties and geometries of constituents. The model suggests that an enhancement in energy dissipation before the material integrity is lost can be achieved by tuning the shear modulus and viscosity of a matrix. Furthermore, our model implies that an appropriately designed staggered microstructure, adopted by many natural composites, can repeatedly activate the energy dissipation process and thus improve dramatically the impact performance. This model demonstrates the role of matrix in energy dissipation, and stimulates new advanced material design concepts for ballistic applications. STATEMENT OF SIGNIFICANCE: Biological composites found in nature often possess exceptional mechanical properties that man-made materials haven't be able to achieve. For example, it is predicted that a pencil thick spider silk thread can stop a flying Boeing airplane. Here, by proposing a dynamic shear-lag model, we investigate the relationships between the impact performance of a composite with the dimensions and properties of its constituents. Our analysis suggests that the impact performance of fiber-reinforced composites could improve surprisingly with "low-grade" matrix materials, and discontinuities (often regarded as "defects") may play an important role in energy dissipation. Counter-intuitive as it may seem, our work helps understanding the secrets of the outstanding dynamic properties of some biological materials, and inspire novel ideas for man-made composites.


Asunto(s)
Materiales Biocompatibles , Modelos Teóricos , Resistencia al Corte
19.
J Phys Chem Lett ; 7(14): 2702-7, 2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-27356465

RESUMEN

The mechanical properties of graphene oxide (GO) are of great importance for applications in materials engineering. Previous mechanochemical studies of GO typically focused on the influence of the degree of oxidation on the mechanical behavior. In this study, using density functional-based tight binding simulations, validated using density functional theory simulations, we reveal that the deformation and failure of GO are strongly dependent on the relative concentrations of epoxide (-O-) and hydroxyl (-OH) functional groups. Hydroxyl groups cause GO to behave as a brittle material; by contrast, epoxide groups enhance material ductility through a mechanically driven epoxide-to-ether functional group transformation. Moreover, with increasing epoxide group concentration, the strain to failure and toughness of GO significantly increases without sacrificing material strength and stiffness. These findings demonstrate that GO should be treated as a versatile, tunable material that may be engineered by controlling chemical composition, rather than as a single, archetypical material.

20.
ACS Nano ; 10(2): 1820-8, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26783825

RESUMEN

Understanding the deformation mechanisms in multilayer graphene (MLG), an attractive material used in nanodevices as well as in the reinforcement of nanocomposites, is critical yet challenging due to difficulties in experimental characterization and the spatiotemporal limitations of atomistic modeling. In this study, we combine nanomechanical experiments with coarse-grained molecular dynamics (CG-MD) simulations to elucidate the mechanisms of deformation and failure of MLG sheets. Elastic properties of graphene sheets with one to three layers are measured using film deflection tests. A nonlinear behavior in the force vs deflection curves for MLGs is observed in both experiments and simulations: during loading/unloading cycles, MLGs dissipate energy through a "recoverable slippage" mechanism. The CG-MD simulations further reveal an atomic level interlayer slippage process and suggest that the dissipated energy scales with film perimeter. Moreover, our study demonstrates that the finite shear strength between individual layers could explain the experimentally measured size-dependent strength with thickness scaling in MLG sheets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...