Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
Int J Biol Macromol ; : 134120, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39074701

RESUMEN

Imbalanced Sirtuin 1 (SIRT1) levels may lead to liver diseases through abnormal regulation of autophagy, but the roles of SIRT1-regulated autophagy in hepatocellular carcinoma are still controversial. In this study, we found that SIRT1 mRNA and protein levels were upregulated in hepatocellular carcinoma, and high SIRT1 expression hinted an advanced stage and a poor prognosis. The differentially expressed proteins were significantly elevated in autophagy, cellular response to stress, and immune signaling pathways. In a thioacetamide-induced hepatocellular carcinoma mouse model, we found that SIRT1 expression was highly increased with increased autophagy and excessive macrophage inflammatory response. Next, we established a Hepa 1-6 cells and macrophage co-culture system in vitro to model the alteration of tumor microenvironment, and found that the medium from CCl4-treated or SIRT1-overexpressing Hepa 1-6 cells triggered the polarization of macrophage M1, and the culture medium derived from M1 macrophage promoted Hepa 1-6 cells growth and intracellular oxidative stress. The progression of liver fibrosis in the CCl4-induced liver fibrosis mouse model showed that inhibition of SIRT1 alleviated inflammatory response and ameliorated liver fibrosis. These findings suggest that SIRT1-regulated autophagy and inflammation are oncogenic in hepatocarcinogenesis.

2.
Lab Invest ; 104(9): 102107, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964504

RESUMEN

DNA mismatch repair gene MutL homolog-1 (MLH1) has divergent effects in many cancers; however, its impact on the metastasis of pancreatic ductal adenocarcinoma (PDAC) remains unclear. In this study, MLH1 stably overexpressed (OE) and knockdowned (KD) sublines were established. Wound healing and transwell assays were used to evaluate cell migration/invasion. In vivo metastasis was investigated in orthotopic implantation models (severe combined immunodeficiency mice). RT-qPCR and western blotting were adopted to show gene/protein expression. MLH1 downstream genes were screened by transcriptome sequencing. Tissue microarray-based immunohistochemistry was applied to determine protein expression in human specimens. In successfully generated sublines, OE cells presented weaker migration/invasion abilities, compared with controls, whereas in KD cells, these abilities were significantly stronger. The metastasis-inhibitory effect of MLH1 was also observed in mice. Mechanistically, G protein-coupled receptor, family C, group 5, member C (GPRC5C) was a key downstream gene of MLH1 in PDAC cells. Subsequently, transient GPRC5C silencing effectively inhibited cell migration/invasion and remarkably reversed the proinvasive effect of MLH1 knockdown in KD cells. In animal models and human PDAC tissues, tumoral GPRC5C expression, negatively associated with MLH1 expressions, was positively correlated with histologic grade, vessel invasion, and poor cancer-specific survival. In conclusion, MLH1 inhibits the metastatic potential of PDAC via downregulation of GPRC5C.

3.
China CDC Wkly ; 6(25): 605-613, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38933038

RESUMEN

What is known about this topic?: H10 avian influenza viruses circulate in wild birds and can reassort with other subtypes. H10N8 and H10N3 have previously caused sporadic human infections in China. What is added by this report?: This report documents the first human case of co-infection with avian-origin H10N5 and seasonal H3N2 influenza viruses. Epidemiological investigations identified H10N5 in environmental samples linked to the patient, but no transmission to close contacts occurred. What are the implications for public health practice?: Enhanced surveillance of avian influenza in live poultry markets and poultry populations is crucial for thoroughly characterizing the epidemiology, transmission, and pathogenesis of H10N5 viruses. Strengthening assessments of outbreak control measures is essential to guide effective management.

4.
Hepatol Int ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769286

RESUMEN

BACKGROUND: Chromobox Homolog 1 (CBX1) plays a crucial role in the pathogenesis of numerous diseases, including the evolution and advancement of diverse cancers. The role of CBX1 in pan-cancer and its mechanism in hepatocellular carcinoma (HCC), however, remains to be further investigated. METHODS: Bioinformatics approaches were harnessed to scrutinize CBX1's expression profile, its association with tumor staging, and its potential impact on patient outcomes across various cancers. Single-cell RNA sequencing data facilitated the investigation of CBX1 expression patterns at the individual cell level. The CBX1 expression levels in HCC and adjacent non-tumor tissues were quantified through Real-Time Polymerase Chain Reaction (RT-PCR), Western Blotting (WB), and Immunohistochemical analyses. A tissue microarray was employed to explore the relationship between CBX1 levels, patient prognosis, and clinicopathological characteristics in HCC. Various in vitro assays-including CCK-8, colony formation, Transwell invasion, and scratch tests-were conducted to assess the proliferative and motility properties of HCC cells upon modulation of CBX1 expression. Moreover, the functional impact of CBX1 on HCC was further discerned through xenograft studies in nude mice. RESULTS: CBX1 was found to be upregulated in most cancer forms, with heightened expression correlating with adverse patient prognoses. Within the context of HCC, elevated levels of CBX1 were consistently indicative of poorer clinical outcomes. Suppression of CBX1 through knockdown methodologies markedly diminished HCC cell proliferation, invasive capabilities, migratory activity, Epithelial-mesenchymal transition (EMT) processes, and resistance to Tyrosine kinase inhibitors (TKIs). Contrastingly, CBX1 augmentation facilitated the opposite effects. Subsequent investigative efforts revealed CBX1 to be a promoter of EMT and a contributor to increased TKI resistance within HCC cells, mediated via the IGF-1R/AKT/SNAIL signaling axis. The oncogenic activities of CBX1 proved to be attenuable either by AKT pathway inhibition or by targeted silencing of IGF-1R. CONCLUSIONS: The broad overexpression of CBX1 in pan-cancer and specifically in HCC positions it as a putative oncogenic entity. It is implicated in forwarding HCC progression and exacerbating TKI resistance through its interaction with the IGF-1R/AKT/SNAIL signaling cascade.

5.
World J Gastroenterol ; 30(19): 2523-2537, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38817655

RESUMEN

BACKGROUND: Autoimmune enteropathy (AIE) is a rare disease whose diagnosis and long-term prognosis remain challenging, especially for adult AIE patients. AIM: To improve overall understanding of this disease's diagnosis and prognosis. METHODS: We retrospectively analyzed the clinical, endoscopic and histopathological characteristics and prognoses of 16 adult AIE patients in our tertiary medical center between 2011 and 2023, whose diagnosis was based on the 2007 diagnostic criteria. RESULTS: Diarrhea in AIE patients was characterized by secretory diarrhea. The common endoscopic manifestations were edema, villous blunting and mucosal hyperemia in the duodenum and ileum. Villous blunting (100%), deep crypt lymphocytic infiltration (67%), apoptotic bodies (50%), and mild intraepithelial lymphocytosis (69%) were observed in the duodenal biopsies. Moreover, there were other remarkable abnormalities, including reduced or absent goblet cells (duodenum 94%, ileum 62%), reduced or absent Paneth cells (duodenum 94%, ileum 69%) and neutrophil infiltration (duodenum 100%, ileum 69%). Our patients also fulfilled the 2018 diagnostic criteria but did not match the 2022 diagnostic criteria due to undetectable anti-enterocyte antibodies. All patients received glucocorticoid therapy as the initial medication, of which 14/16 patients achieved a clinical response in 5 (IQR: 3-20) days. Immunosuppressants were administered to 9 patients with indications of steroid dependence (6/9), steroid refractory status (2/9), or intensified maintenance medication (1/9). During the median of 20.5 months of follow-up, 2 patients died from multiple organ failure, and 1 was diagnosed with non-Hodgkin's lymphoma. The cumulative relapse-free survival rates were 62.5%, 55.6% and 37.0% at 6 months, 12 months and 48 months, respectively. CONCLUSION: Certain histopathological findings, including a decrease or disappearance of goblet and Paneth cells in intestinal biopsies, might be potential diagnostic criteria for adult AIE. The long-term prognosis is still unsatisfactory despite corticosteroid and immunosuppressant medications, which highlights the need for early diagnosis and novel medications.


Asunto(s)
Glucocorticoides , Humanos , Femenino , Masculino , Estudios Retrospectivos , Adulto , Persona de Mediana Edad , Pronóstico , Biopsia , Glucocorticoides/uso terapéutico , Poliendocrinopatías Autoinmunes/diagnóstico , Poliendocrinopatías Autoinmunes/inmunología , Poliendocrinopatías Autoinmunes/patología , Poliendocrinopatías Autoinmunes/tratamiento farmacológico , Poliendocrinopatías Autoinmunes/terapia , Íleon/patología , Íleon/inmunología , Duodeno/patología , Duodeno/inmunología , Diarrea/etiología , Diarrea/diagnóstico , Diarrea/inmunología , Mucosa Intestinal/patología , Mucosa Intestinal/inmunología , Inmunosupresores/uso terapéutico , Anciano , Adulto Joven , Endoscopía Gastrointestinal
6.
Endocrine ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656750

RESUMEN

PURPOSE: To evaluate the effect and mechanism of 1,25(OH)2D3 on pancreatic stellate cells (PSCs) in type 2 diabetes mellitus (T2DM). METHODS: A mouse model of T2DM was successfully established by high-fat diet (HFD) /streptozotocin (STZ) and administered 1,25(OH)2D3 for 3 weeks. Fasting blood glucose (FBG), glycated hemoglobin A1c (GHbA1c), insulin (INS) and glucose tolerance were measured. Histopathology changes and fibrosis of pancreas were examined by hematoxylin and eosin staining and Masson staining. Mouse PSCs were extracted, co-cultured with mouse insulinoma ß cells (MIN6 cells) and treated with 1,25(OH)2D3. ELISA detection of inflammatory factor expression. Tissue reactive oxygen species (ROS) levels were also measured. Immunofluorescence or Western blotting were used to measure fibrosis and inflammation-related protein expression. RESULTS: PSCs activation and islets fibrosis in T2DM mice. Elevated blood glucose was accompanied by significant increases in serum inflammatory cytokines and tissue ROS levels. 1,25(OH)2D3 attenuated islet fibrosis by reducing hyperglycemia, ROS levels, and inflammatory factors expression. Additionally, the co-culture system confirmed that 1,25(OH)2D3 inhibited PSCs activation, reduced the secretion of pro-inflammatory cytokines, down-regulated the expression of fibrosis and inflammation-related proteins, and promoted insulin secretion. CONCLUSION: Our findings identify that PSCs activation contributes to islet fibrosis and ß-cell dysfunction. 1,25(OH)2D3 exerts beneficial effects on T2DM potentially by inhibiting PSCs activation and inflammatory response, highlighting promising control strategies of T2DM by vitamin D.

7.
Food Funct ; 15(9): 4682-4702, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38590246

RESUMEN

Cereals are the main source of energy in the human diet. Compared to refined grains, whole grains retain more beneficial components, including dietary fiber, polyphenols, proteins, vitamins, and minerals. Dietary fiber and bound polyphenols (biounavailable) in cereals are important active substances that can be metabolized by the gut microorganisms and affect the intestinal environment. There is a close relationship between the gut microbiota structures and various disease phenotypes, although the consistency of this link is affected by many factors, and the specific mechanisms are still unclear. Remodeling unfavorable microbiota is widely recognized as an important way to target the gut and improve diseases. This paper mainly reviews the interaction between the gut microbiota and cereal-derived dietary fiber and polyphenols, and also summarizes the changes to the gut microbiota and possible molecular mechanisms of related glycolipid metabolism. The exploration of single active ingredients in cereals and their synergistic health mechanisms will contribute to a better understanding of the health benefits of whole grains. It will further help promote healthier whole grain foods by cultivating new varieties with more potential and optimizing processing methods.


Asunto(s)
Fibras de la Dieta , Microbioma Gastrointestinal , Polifenoles , Granos Enteros , Polifenoles/metabolismo , Fibras de la Dieta/metabolismo , Fibras de la Dieta/análisis , Humanos , Granos Enteros/química , Granos Enteros/metabolismo , Animales , Grano Comestible/química
8.
J Colloid Interface Sci ; 664: 893-901, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38493654

RESUMEN

Electrocatalysts are useful in lowering the energy barrier in oxygen reduction reaction (ORR). In this study, a catalyst with neighboring Fe single-atom and cluster is created by adsorbing a bimetallic Fe complex onto N-doped carbon and then pyrolyzing it. The resulting catalyst has good performance and a half-wave potential of 0.89 V. When used in Zn-air batteries, the voltage drops by only 8.13 % after 145 h of cycling. Theoretical studies show that electrons transfer from neighboring clusters to single atoms and the catalyst has a lower d-band center. These reduce intermediate desorption energy, hence improving ORR performance. This work demonstrates the capacity to adjust the catalytic properties through the interaction of diverse metal structures, which helps to design more efficient catalysts.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38545361

RESUMEN

Background: In this meta-analysis, we aimed to systematically examine the relationship between body mass index and major adverse cardiovascular events in acute coronary syndrome patients and to provide theoretical guidance for body weight management in these patients. Methods: A comprehensive analysis of applicable research published between 2008 and 2021 was conducted using the PubMed, Cochrane, Web of Science, Wanfang, and CNKI databases. Extracted odds ratios from the randomized-controlled studies were pooled using fixed-effects meta-analysis. Publication bias was addressed through evaluation methods such as funnel plot or sensitivity analysis. Results: Ten studies with a total of 58,992 individuals were included. The consequences of this meta-analysis confirmed that, compared to normal body mass index, patients with acute coronary syndrome significantly increased the risk of major adverse cardiovascular events (odds ratio= 1.20; 95% confidence interval: 1.12-1.29, p<0.001). Conclusion: Patients with acute coronary syndrome being overweight or obese significantly increased the risk of major adverse cardiovascular events compared to those with normal body mass index. The results suggest that patients may focus on weight management to reduce the risk of major adverse cardiovascular events in acute coronary syndrome.

10.
World J Gastroenterol ; 30(2): 146-157, 2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38312116

RESUMEN

BACKGROUND: Eosinophilic gastroenteritis (EGE) is a chronic recurrent disease with abnormal eosinophilic infiltration in the gastrointestinal tract. Glucocorticoids remain the most common treatment method. However, disease relapse and glucocorticoid dependence remain notable problems. To date, few studies have illuminated the prognosis of EGE and risk factors for disease relapse. AIM: To describe the clinical characteristics of EGE and possible predictive factors for disease relapse based on long-term follow-up. METHODS: This was a retrospective cohort study of 55 patients diagnosed with EGE admitted to one medical center between 2013 and 2022. Clinical records were collected and analyzed. Kaplan-Meier curves and log-rank tests were conducted to reveal the risk factors for long-term relapse-free survival (RFS). RESULTS: EGE showed a median onset age of 38 years and a slight female predominance (56.4%). The main clinical symptoms were abdominal pain (89.1%), diarrhea (61.8%), nausea (52.7%), distension (49.1%) and vomiting (47.3%). Forty-three (78.2%) patients received glucocorticoid treatment, and compared with patients without glucocorticoid treatments, they were more likely to have elevated serum immunoglobin E (IgE) (86.8% vs 50.0%, P = 0.022) and descending duodenal involvement (62.8% vs 27.3%, P = 0.046) at diagnosis. With a median follow-up of 67 mo, all patients survived, and 56.4% had at least one relapse. Six variables at baseline might have been associated with the overall RFS rate, including age at diagnosis < 40 years [hazard ratio (HR) 2.0408, 95% confidence interval (CI): 1.0082-4.1312, P = 0.044], body mass index (BMI) > 24 kg/m2 (HR 0.3922, 95%CI: 0.1916-0.8027, P = 0.014), disease duration from symptom onset to diagnosis > 3.5 mo (HR 2.4725, 95%CI: 1.220-5.0110, P = 0.011), vomiting (HR 3.1259, 95%CI: 1.5246-6.4093, P = 0.001), total serum IgE > 300 KU/L at diagnosis (HR 0.2773, 95%CI: 0.1204-0.6384, P = 0.022) and glucocorticoid treatment (HR 6.1434, 95%CI: 2.8446-13.2676, P = 0.003). CONCLUSION: In patients with EGE, younger onset age, longer disease course, vomiting and glucocorticoid treatment were risk factors for disease relapse, whereas higher BMI and total IgE level at baseline were protective.


Asunto(s)
Enteritis , Eosinofilia , Gastritis , Glucocorticoides , Humanos , Femenino , Adulto , Masculino , Glucocorticoides/uso terapéutico , Estudios Retrospectivos , Enteritis/diagnóstico , Enteritis/complicaciones , Pronóstico , Enfermedad Crónica , Vómitos , Recurrencia , Inmunoglobulina E
11.
Cell Commun Signal ; 22(1): 84, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291511

RESUMEN

BACKGROUND: Alzheimer's disease (AD), affecting many elders worldwide, is characterized by A-beta and tau-related cognitive decline. Accumulating evidence suggests that brain iron accumulation is an important characteristic of AD. However, the function and mechanism of the iron-mediated gut-brain axis on AD is still unclear. METHODS: A Caenorhabditis elegans model with tau-overexpression and a high-Fe diet mouse model of cognitive impairment was used for probiotic function evaluation. With the use of qPCR, and immunoblotting, the probiotic regulated differential expression of AD markers and iron related transporting genes was determined. Colorimetric kits, IHC staining, and immunofluorescence have been performed to explore the probiotic mechanism on the development of gut-brain links and brain iron accumulation. RESULTS: In the present study, a high-Fe diet mouse model was used for evaluation in which cognitive impairment, higher A-beta, tau and phosphorylated (p)-tau expression, and dysfunctional phosphate distribution were observed. Considering the close crosstalk between intestine and brain, probiotics were then employed to delay the process of cognitive impairment in the HFe mouse model. Pediococcus acidilactici (PA), but not Bacillus subtilis (BN) administration in HFe-fed mice reduced brain iron accumulation, enhanced global alkaline phosphatase (AP) activity, accelerated dephosphorylation, lowered phosphate levels and increased brain urate production. In addition, because PA regulated cognitive behavior in HFe fed mice, we used the transgenic Caenorhabditis elegans with over-expressed human p-tau for model, and then PA fed worms became more active and longer lived than E.coli fed worms, as well as p-tau was down-regulated. These results suggest that brain iron accumulation influences AD risk proteins and various metabolites. Furthermore, PA was shown to reverse tau-induced pathogenesis via iron transporters and AP-urate interaction. CONCLUSIONS: PA administration studies demonstrate that PA is an important mediator of tau protein reduction, p-tau expression and neurodegenerative behavior both in Caenorhabditis elegans and iron-overload mice. Finally, our results provide candidates for AP modulation strategies as preventive tools for promoting brain health. Video Abstract.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Pediococcus acidilactici , Ratones , Animales , Humanos , Anciano , Pediococcus acidilactici/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Caenorhabditis elegans/metabolismo , Ácido Úrico , Ratones Transgénicos , Enfermedad de Alzheimer/metabolismo , Hierro , Fosfatos
12.
New Phytol ; 241(4): 1421-1434, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38174365

RESUMEN

Receptor-like kinases (RLKs) are evolved for plant cell-cell communications. The typical RLK protein contains an extracellular and hypervariable N-terminus to perceive various signals, a transmembrane domain to anchor into plasma membrane, and a cytoplasmic, highly conserved kinase domain to phosphorylate target proteins. To date, RLKs have manifested their significance in a myriad of biological processes during plant reproductive growth, especially in male fertility. This review first summarizes a recent update on RLKs and their interacting protein partners controlling anther and pollen development, pollen release from dehisced anther, and pollen function during pollination and fertilization. Then, regulatory networks of RLK signaling pathways are proposed. In addition, we predict RLKs in maize and rice genome, obtain homologs of well-studied RLKs from phylogeny of three subfamilies and then analyze their expression patterns in developing anthers of maize and rice to excavate potential RLKs regulating male fertility in crops. Finally, current challenges and future prospects regarding RLKs are discussed. This review will contribute to a better understanding of plant male fertility control by RLKs, creating potential male sterile lines, and inspiring innovative crop breeding methods.


Asunto(s)
Fitomejoramiento , Plantas , Plantas/genética , Plantas/metabolismo , Transducción de Señal , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fertilidad
13.
Laryngoscope ; 134(2): 937-944, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37421255

RESUMEN

OBJECTIVE: Our team designed a long-lasting, well-sealed microphone, which uses laser welding and vacuum packaging technology. This study examined the sensitivity and effectiveness of this new floating piezoelectric microphone (NFPM) designed for totally implantable cochlear implants (TICIs) in animal experiments and intraoperative testing. METHODS: Different NFPM frequency responses from 0.25 to 10 kHz at 90 dB SPL were analyzed using in vivo testing of cats and human patients. The NFPM was tested in different positions that were clamped to the ossicular chains or placed in the tympanic cavity of cats and human patients. Two volunteers' long incus foot and four cats' malleus neck of the ossicular chain were clamped with the NSFM. The output electrical signals from different locations were recorded, analyzed, and compared. The NFPM was removed after the test without causing any damage to the middle-ear structure of the cats. Intraoperative tests of the NFPM were performed during the cochlear implant surgery and the cochlear implant surgery was completed after all tests. RESULTS: Compared with the results in the tympanic cavity, the NFPM could detect the vibration from the ossicular chain more sensitively in cat experiments and intraoperative testing. We also found that the signal output level of the NFPM decreased as the acoustic stimulation strength decreased in the intraoperative testing. CONCLUSION: The NFPM is effective in the intraoperative testing, making it feasible as an implantable middle-ear microphone for TICIs. LEVEL OF EVIDENCE: 4 Laryngoscope, 134:937-944, 2024.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Animales , Humanos , Diseño de Prótesis , Oído Medio/cirugía , Osículos del Oído/cirugía
14.
Plant J ; 117(4): 1148-1164, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37967146

RESUMEN

Nitrogen (N) is an essential factor for limiting crop yields, and cultivation of crops with low nitrogen-use efficiency (NUE) exhibits increasing environmental and ecological risks. Hence, it is crucial to mine valuable NUE improvement genes, which is very important to develop and breed new crop varieties with high NUE in sustainable agriculture system. Quantitative trait locus (QTL) and genome-wide association study (GWAS) analysis are the most common methods for dissecting genetic variations underlying complex traits. In addition, with the advancement of biotechnology, multi-omics technologies can be used to accelerate the process of exploring genetic variations. In this study, we integrate the substantial data of QTLs, quantitative trait nucleotides (QTNs) from GWAS, and multi-omics data including transcriptome, proteome, and metabolome and further analyze their interactions to predict some NUE-related candidate genes. We also provide the genic resources for NUE improvement among maize, rice, wheat, and sorghum by homologous alignment and collinearity analysis. Furthermore, we propose to utilize the knowledge gained from classical cases to provide the frameworks for improving NUE and breeding N-efficient varieties through integrated genomics, systems biology, and modern breeding technologies.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Zea mays/genética , Nitrógeno , Fitomejoramiento , Productos Agrícolas/genética
15.
J Adv Res ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37739122

RESUMEN

BACKGROUND: Cereal crops are a primary energy source for humans. Grain size and weight affect both evolutionary fitness and grain yield of cereals. Although studies on gene mining and molecular mechanisms controlling grain size and weight are constantly emerging in cereal crops, only a few systematic reviews on the underlying molecular mechanisms and their breeding applications are available so far. AIM OF REVIEW: This review provides a general state-of-the-art overview of molecular mechanisms and targeted strategies for improving grain size and weight of cereals as well as insights for future yield-improving biotechnology-assisted breeding. KEY SCIENTIFIC CONCEPTS OF REVIEW: In this review, the evolution of research on grain size and weight over the last 20 years is traced based on a bibliometric analysis of 1158 publications and the main signaling pathways and transcriptional factors involved are summarized. In addition, the roles of post-transcriptional regulation and photosynthetic product accumulation affecting grain size and weight in maize and rice are outlined. State-of-the-art strategies for discovering novel genes related to grain size and weight in maize and other cereal crops as well as advanced breeding biotechnology strategies being used for improving yield including marker-assisted selection, genomic selection, transgenic breeding, and genome editing are also discussed.

16.
Mol Plant ; 16(8): 1321-1338, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37501369

RESUMEN

Because of its significance for plant male fertility and, hence, direct impact on crop yield, pollen exine development has inspired decades of scientific inquiry. However, the molecular mechanism underlying exine formation and thickness remains elusive. In this study, we identified that a previously unrecognized repressor, ZmMS1/ZmLBD30, controls proper pollen exine development in maize. Using an ms1 mutant with aberrantly thickened exine, we cloned a male-sterility gene, ZmMs1, which encodes a tapetum-specific lateral organ boundary domain transcription factor, ZmLBD30. We showed that ZmMs1/ZmLBD30 is initially turned on by a transcriptional activation cascade of ZmbHLH51-ZmMYB84-ZmMS7, and then it serves as a repressor to shut down this cascade via feedback repression to ensure timely tapetal degeneration and proper level of exine. This activation-feedback repression loop regulating male fertility is conserved in maize and sorghum, and similar regulatory mechanism may also exist in other flowering plants such as rice and Arabidopsis. Collectively, these findings reveal a novel regulatory mechanism of pollen exine development by which a long-sought master repressor of upstream activators prevents excessive exine formation.


Asunto(s)
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/fisiología , Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Mutación
17.
Nat Prod Bioprospect ; 13(1): 21, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37410272

RESUMEN

Three new halimane furanoditerpenoids (1-3) and three new clerodane furanoditerpenoids (4-6), along with seven known terpenoids including four pimarane diterpenoids (7-10) and three norisoprenoids (11-13) were isolated from the 95% EtOH extracts of the plants of Croton cnidophyllus. The 2D structures including absolute configuration of new furanoditerpenoids (1-6) were elucidated by analysis of their HRMS and NMR data as well as comparison of experimental and calculated ECD curves. Bioassay revealed that two compounds (8 and 9) possessed certain inhibitory effects against NO production stimulated by LPS, with IC50 values of 19.00 ± 1.76 and 21.61 ± 1.11 µM, respectively.

18.
BMC Cancer ; 23(1): 511, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277714

RESUMEN

BACKGROUND: This study aimed to identify the biological functions, expression modes, and possible mechanisms underlying the relationship between metastatic human hepatocellular carcinoma (HCC) and MicroRNA-188-5p (miR-188) dysregulation using cell lines. METHODS: A decrease in miR-188 was detected in low and high metastatic HCC cells compared to that in normal hepatic cells and non-invasive cell lines. Gain- and loss-of-function experiments were performed in vitro to investigate the role of miR-188 in cancer cell (Hep3B, HepG2, HLF, and LM3) proliferation and migration. RESULTS: miR-188 mimic transfection inhibited the proliferation of metastatic HLF and LM3 cells but not non-invasive HepG2 and Hep3B cells; nonetheless, miR-188 suppression promoted the growth of HLF and LM3 cells. miR-188 upregulation inhibited the migratory rate and invasive capacity of HLF and LM3, rather than HepG2 and Hep3B cells, whereas transfection of a miR-188 inhibitor in HLF and LM3 cells had the opposite effects. Dual-luciferase reporter assays and bioinformatics prediction confirmed that miR-188 could directly target forkhead box N2 (FOXN2) in HLF and LM3 cells. Transfection of miR-188 mimics reduced FOXN2 levels, whereas miR-188 inhibition resulted in the opposite result, in HLF and LM3 cells. Overexpression of FOXN2 in HLF and LM3 cells abrogated miR-188 mimic-induced downregulation of proliferation, migration, and invasion. In addition, we found that miR-188 upregulation impaired tumor growth in vivo. CONCLUSIONS: In summary, this study showed thatmiR-188 inhibits the proliferation and migration of metastatic HCC cells by targeting FOXN2.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo
19.
Plant Cell Rep ; 42(9): 1395-1417, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37311877

RESUMEN

KEY MESSAGE: This review summarizes the molecular basis and emerging applications of developmental regulatory genes and nanoparticles in plant transformation and discusses strategies to overcome the obstacles of genotype dependency in plant transformation. Plant transformation is an important tool for plant research and biotechnology-based crop breeding. However, Plant transformation and regeneration are highly dependent on species and genotype. Plant regeneration is a process of generating a complete individual plant from a single somatic cell, which involves somatic embryogenesis, root and shoot organogeneses. Over the past 40 years, significant advances have been made in understanding molecular mechanisms of embryogenesis and organogenesis, revealing many developmental regulatory genes critical for plant regeneration. Recent studies showed that manipulating some developmental regulatory genes promotes the genotype-independent transformation of several plant species. Besides, nanoparticles penetrate plant cell wall without external forces and protect cargoes from degradation, making them promising materials for exogenous biomolecule delivery. In addition, manipulation of developmental regulatory genes or application of nanoparticles could also bypass the tissue culture process, paving the way for efficient plant transformation. Applications of developmental regulatory genes and nanoparticles are emerging in the genetic transformation of different plant species. In this article, we review the molecular basis and applications of developmental regulatory genes and nanoparticles in plant transformation and discuss how to further promote genotype-independent plant transformation.


Asunto(s)
Biotecnología , Fitomejoramiento , Plantas Modificadas Genéticamente/genética , Genes Reguladores , Genotipo , Técnicas de Embriogénesis Somática de Plantas
20.
Plant Biotechnol J ; 21(9): 1839-1859, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37349934

RESUMEN

Stalk rot caused by Fusarium verticillioides (Fv) is one of the most destructive diseases in maize production. The defence response of root system to Fv invasion is important for plant growth and development. Dissection of root cell type-specific response to Fv infection and its underlying transcription regulatory networks will aid in understanding the defence mechanism of maize roots to Fv invasion. Here, we reported the transcriptomes of 29 217 single cells derived from root tips of two maize inbred lines inoculated with Fv and mock condition, and identified seven major cell types with 21 transcriptionally distinct cell clusters. Through the weighted gene co-expression network analysis, we identified 12 Fv-responsive regulatory modules from 4049 differentially expressed genes (DEGs) that were activated or repressed by Fv infection in these seven cell types. Using a machining-learning approach, we constructed six cell type-specific immune regulatory networks by integrating Fv-induced DEGs from the cell type-specific transcriptomes, 16 known maize disease-resistant genes, five experimentally validated genes (ZmWOX5b, ZmPIN1a, ZmPAL6, ZmCCoAOMT2, and ZmCOMT), and 42 QTL or QTN predicted genes that are associated with Fv resistance. Taken together, this study provides not only a global view of maize cell fate determination during root development but also insights into the immune regulatory networks in major cell types of maize root tips at single-cell resolution, thus laying the foundation for dissecting molecular mechanisms underlying disease resistance in maize.


Asunto(s)
Fusarium , Zea mays , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Fusarium/fisiología , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA