Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Sex Behav ; 51(4): 2077-2089, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35467170

RESUMEN

Previous research indicates a link between autism and transgender and gender-diverse identities, though the association is not yet fully understood. The current study examined autistic traits (Autism Spectrum Quotient [AQ]), empathizing (Empathizing Quotient-Short [EQ-S]), and systemizing (Systemizing Quotient-Short [SQ-S]) in a sample of 89 adults and aimed to test whether gender-diverse individuals exhibit cognitive profiles consistent with predictions derived from the Extreme Male Brain (EMB) theory. As most research has considered only cisgender people, we recruited a more diverse sample by contacting > 200 UK LGBTQ+ organizations and posting on social media. A range of non-cisgender identities (e.g., transgender male, transgender female, non-binary, genderqueer, transmasculine) and non-heterosexual orientations (e.g., bisexual) were represented, and participants were categorized into one of four groups: (1) assigned female at birth but does not identify as female (transgender AFAB) (n = 32), (2) cisgender female (n = 21), (3) assigned male at birth but does not identify as male (transgender AMAB) (n = 18), and (4) cisgender male (n = 18). After controlling for age and autism diagnostic status, transgender AFAB participants had marginally higher AQ scores, and significantly higher SQ-S and systemizing-relative-to-empathizing (D) scores, compared with the cisgender female group. No such differences were detected between the transgender AMAB and cisgender male groups. Our findings are broadly in line with predictions derived from the EMB theory, though as no transgender AFAB participants reported being heterosexual, it was not possible to determine whether these effects relate specifically to gender identity, to sexual orientation, or to both.


Asunto(s)
Trastorno Autístico , Personas Transgénero , Adulto , Trastorno Autístico/diagnóstico , Trastorno Autístico/psicología , Encéfalo , Empatía , Femenino , Identidad de Género , Humanos , Recién Nacido , Masculino , Personas Transgénero/psicología
2.
Stem Cell Res Ther ; 12(1): 365, 2021 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-34174939

RESUMEN

BACKGROUND: State-of-the-art advances have indicated the pivotal characteristics of bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) in hematopoietic microenvironment as well as coordinate contribution to hematological malignancies. However, the panoramic view and detailed dissection of BM-MSCs in patients with acute myeloid leukemia (AML-MSCs) remain obscure. METHODS: For the purpose, we isolated and identified AML-MSCs together with healthy donor-derived HD-MSCs from the bone marrow mononuclear cells (BM-MNCs) by using the standard density gradient centrifugation based on clinical diagnosis and cellular phenotypic analysis. Subsequently, we systematically compared the potential similarities and discrepancy both at the cellular and molecular levels via flow cytometry, multilineage differentiation, chromosome karyotyping, cytokine quantification, and transcriptome sequencing and bioinformatic analysis including single-nucleotide polymorphism (SNP), gene ontology (GO), HeatMap, principal component analysis (PCA), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA). RESULTS: On the one hand, AML-MSCs exhibited undistinguishable signatures in cytomorphology, surface biomarker expression pattern, stemness, chromosome karyotype, and chondrogenesis as HD-MSCs, whereas with impaired adipogenesis, enhanced osteogenesis, and variations in cytokine expression pattern. On the other hand, with the aid of genomic and bioinformatic analyses, we verified that AML-MSCs displayed multidimensional discrepancy with HD-MSCs both in genome-wide gene expression profiling and genetic variation spectrum. Simultaneously, the deficiency of cellular vitality including proliferation and apoptosis in AML-MSCs was largely rescued by JAK-STAT signaling inhibition. CONCLUSIONS: Overall, our findings elucidated that AML-MSCs manifested multifaceted alterations in biological signatures and molecular genetics, and in particular, the deficiency of cellular vitality ascribed to over-activation of JAK-STAT signal, which collectively provided systematic and overwhelming new evidence for decoding the pathogenesis of AML and exploring therapeutic strategies in future.


Asunto(s)
Leucemia Mieloide Aguda , Células Madre Mesenquimatosas , Médula Ósea , Células de la Médula Ósea , Proliferación Celular , Humanos , Leucemia Mieloide Aguda/genética , Transcriptoma , Microambiente Tumoral
3.
Cell Biosci ; 11(1): 6, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407870

RESUMEN

BACKGROUND: Current studies have enlightened the rosy prospects of human pluripotent stem cell (hPSC)-derived mesenchymal stem/stromal cells (MSCs) in regenerative medicine. However, systematic investigation of their signatures and applications with alternative biomaterials in osteoarthritis (OA) remains indistinct. METHODS: Herein, we initially took advantage of a small molecule library-mediated programming strategy for hPSC-MSC induction. Then, with the aid of multifaceted analyses such as flow cytometry (FCM), chromosome karyocyte and cell vitality, wound healing and microtubule formation assay and coculturing with T lymphocytes, we systematically evaluated the characterizations of signatures in vitro and the in vivo efficacy of hPSC-MSCs and HA hydrogel composite on rabbit osteoarthritis model. RESULTS: We found the combination of LLY-507 and AZD5153 was sufficient for high-efficiency CD73+CD90+CD105+CD31-CD34-CD45-HLA-DR- MSC induction from both hESCs and hiPSCs with stemness (POU5F1/SOX2/NANOG). The programmed hPSC-MSCs revealed conservative transcriptome variations and went through a heterogeneous intermediate-stage with mesenchymal-associated gene expression (NT5E, ENG, VIM and FN1) as well as displayed typical cytomorphology, immunophenotypes and normal karyotyping, multilineage differentiation potential, favorable cell vitality, proangiogenic and immunoregulatory properties in vitro. Meanwhile, the cell population exhibited preferable restorative and ameliorative function on OA rabbits with HA hydrogel in vivo. CONCLUSIONS: Collectively, we established a rapid and convenient procedure for hPSC-MSC generation without redundant manipulations. The fundamental and clinical studies upon osteoarthritis (OA) treatment would benefit tremendously from the combination of the inexhaustible hPSC-MSCs and advantageous biomaterials.

4.
Cell Prolif ; 53(8): e12862, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32597552

RESUMEN

OBJECTIVE: Longitudinal studies have indicated VCAM-1+ mesenchymal stem/stromal cells (MSCs) as promising resources in regenerative medicine, yet the abundance in gene expression is far from adequate in the advantaged and "discarded" hUC-MSCs. Thus, high-efficient preparation and systematic dissection of the signatures and biofunctions of the subpopulation is the prerequisite for large-scale clinical applications. MATERIALS AND METHODS: We primarily took advantage of a cytokine-based programming strategy for large-scale VCAM-1+ hUC-MSC generation (III-MSCs). Thereafter, we conducted multifaceted analyses including cytomorphology, immunophenotype, cell vitality, multilineage differentiation, whole-genome analysis, tube formation and Matrigel plug assay, lymphocyte activation and differentiation, and systemic transplantation for aplastic anaemia (AA) treatment. RESULTS: III-MSCs with high-proportioned VCAM-1 expression were obtained by combining IL-1ß, IL-4 with IFN-γ, which exhibited comparable immunophenotype with untreated hUC-MSCs (NT-MSCs) but revealed multidimensional superiorities both at the cellular and molecular levels. Simultaneously, systemic infusion of III-MSCs could significantly ameliorate clinicopathological features and finally help facilitate haematopoietic reconstruction and immunoregulation in AA mice. CONCLUSIONS: We have established a high-efficient procedure for large-scale generation of III-MSCs with preferable signatures and efficacy upon aplastic anaemia in mice. Our findings suggested that III-MSCs were advantageous sources with multifaceted characteristics for regenerative medicine.


Asunto(s)
Anemia Aplásica/terapia , Células Madre Mesenquimatosas/citología , Cordón Umbilical/citología , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Inmunofenotipificación/métodos , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones
6.
Stem Cell Res Ther ; 10(1): 354, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31779707

RESUMEN

BACKGROUND: Mesenchymal stem cells are heterogenous populations with hematopoietic supporting and immunomodulating capacities. Enormous studies have focused on their preclinical or clinical therapeutic effects, yet the systematic study of continuous in vitro passages on signatures and functions of UC-MSCs at both the cellular and molecular levels is still lacking. METHODS: In this study, to systematically evaluate the biological properties of MSCs at various passages, we analyzed biomarker expression, cell proliferation and apoptosis, chromosome karyotype, and tri-lineage differentiation potential. Subsequently, we took advantage of whole-exome sequencing to compare the somatic hypermutation of hUC-MSCs at P3, P6, and P15 including SNV and INDEL mutations. In addition, to explore the safety of the abovementioned hUC-MSCs, we performed metabolic pathway enrichment analysis and in vivo transplantation analysis. Furthermore, we cocultured the abovementioned hUC-MSCs with UCB-CD34+ HSCs to evaluate their hematopoietic supporting capacity in vitro. Finally, we transplanted the cells into acute graft-versus-host disease (aGVHD) mice to further evaluate their therapeutic effect in vivo. RESULTS: The hUC-MSCs at P3, P6, and P15 showed similar morphology, biomarker expression, and cytokine secretion. hUC-MSCs at P15 had advantages on adipogenic differentiation and some cytokine secretion such as IL-6 and VEGF, with disadvantages on cell proliferation, apoptosis, and osteogenic and chondrogenic differentiation potential. Based on the SNP data of 334,378 exons and bioinformatic analyses, we found the somatic point mutations could be divided into 96 subsets and formed 30 kinds of signatures but did not show correlation with risk of tumorigenesis, which was confirmed by the in vivo transplantation experiments. However, hUC-MSCs at P15 showed impaired hematologic supporting effect in vitro and declined therapeutic effect on aGVHD in vivo. CONCLUSIONS: In this study, we systematically evaluated the biological and genetic properties of hUC-MSCs at various passages. Our findings have provided new references for safety and effectiveness assessments, which will provide overwhelming evidence for the safety of hUC-MSCs after continuous in vitro passages both at the cellular and molecular levels for the first time. Taken together, our studies could help understand the controversial effects of disease treatment and benefit the clinical research of UC-MSCs.


Asunto(s)
Técnicas de Cultivo de Célula , Enfermedad Injerto contra Huésped/metabolismo , Enfermedad Injerto contra Huésped/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Enfermedad Aguda , Animales , Modelos Animales de Enfermedad , Enfermedad Injerto contra Huésped/patología , Xenoinjertos , Humanos , Células Madre Mesenquimatosas/patología , Ratones , Ratones Endogámicos BALB C
7.
Stem Cell Res Ther ; 10(1): 186, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-31234947

RESUMEN

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) derived from human embryonic stem cells (hESCs) are attractive for their hematopoietic-supporting or potential therapeutic effects. However, procedures for high-effective and scalable generation of MSCs from hESCs within 2 weeks are still unestablished, which also hinder the development and mechanism study of mesengenesis. METHODS: In this study, we aimed to establish a strategy for programming hESC differentiation into MSCs by practicing small-scale chemical compound screening. Then, we used flow cytometry, multi-lineage differentiation, and karyotype analyses to investigate the biological phenotypes of the derived hESC-MSCs. Also, to explore whether the derived cells had hematopoietic-supporting ability in vitro, we carried out the cobblestone formation and megakaryocytic differentiation experiments. To further evaluate the function of hESC-MSCs in vivo, we transplanted the cells into a mouse model with hind limb ischemia. RESULTS: By simultaneous treatments with a JAK/STAT antagonist and a DNA methylation inhibitor, the efficiency of generating hESCs into CD73+ hESC-MPCs could reach 60% within 7 days. The derived cells further matured into hESC-MSCs, with comparable characteristics to those of adult MSCs in terms of surface markers, normal karyotype, and the potential for adipogenic, osteogenic, and chondrogenic differentiation. Functionally, hESC-MSCs had hematopoietic-supporting effects in vitro and could notably relieve symptoms of hind limb ischemia. CONCLUSIONS: In the study, we established a high-efficient procedure for large-scale generation of MSCs from hESCs, which would be of great help for genesis and mechanism studies of MSCs. Meanwhile, the derived cells provide an alternative for translational clinical research.


Asunto(s)
Hematopoyesis/fisiología , Miembro Posterior/patología , Isquemia/patología , Isquemia/terapia , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular , Femenino , Citometría de Flujo , Hematopoyesis/genética , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Cariotipo , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/fisiología , Megacariocitos/citología , Megacariocitos/fisiología , Trasplante de Células Madre Mesenquimatosas , Ratones , Ratones Endogámicos BALB C
8.
Cytotherapy ; 20(2): 181-188, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29269240

RESUMEN

BACKGROUND AIMS: Imatinib (IM), a tyrosine kinase inhibitor targeting the BCR-ABL oncoprotein, remains a major therapeutic strategy for patients with chronic myelogenous leukemia (CML). However, IM resistance is still a challenge in the treatment of CML. Recently, it was reported that exosomes (Exo) were involved in drug resistance. Therefore, the present study investigated whether Exo secreted by human umbilical cord mesenchymal stromal cells (hUC-MSC-Exo) affected the sensitivity of K562 cells to IM. METHODS: hUC-MSC-Exo were isolated and identified. K562 cells were then treated or not with IM (1 µmol/L) in combination with hUC-MSC-Exo (50 µg/mL). Cell viability and apoptosis were determined by cell counting kit 8 (CCK-8) and annexin V/propidium iodide (PI) double staining, respectively. Apoptotic proteins, caspase and their cleaved forms were detected by Western blot. RESULTS: It was shown that hUC-MSC-Exo alone had no effect on cell viability and apoptosis of K562 cells. However, hUC-MSC-Exo promoted IM-induced cell viability inhibition and apoptosis. Moreover, hUC-MSC-Exo enhanced the increased Bax expression and the decreased Bcl-2 expression that were induced by IM. Compared with IM alone, caspase-9 and caspase-3 were further activated by combination of hUC-MSC-Exo with IM. Finally, the effects of hUC-MSC-Exo on K562 cells could be reversed by pretreatment of K562 cells with caspase inhibitor Z-VAD-FMK (30 µmol/L) DISCUSSION: These results indicate that hUC-MSC-Exo enhanced the sensitivity of K562 cells to IM via activation of caspase signaling pathway. Therefore, combining IM with hUC-MSC-Exo could be a promising approach to improve the efficacy of CML treatment.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Exosomas/metabolismo , Mesilato de Imatinib/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Células Madre Mesenquimatosas/metabolismo , Transducción de Señal , Supervivencia Celular/efectos de los fármacos , Exosomas/efectos de los fármacos , Humanos , Células K562 , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...