Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(16): e202401103, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38412017

RESUMEN

Singlet fission (SF) holds great promise for current photovoltaic technologies, where tetracenes, with their relatively high triplet energies, play a major role for application in silicon-based solar cells. However, the SF efficiencies in tetracene dimers are low due to the unfavorable energetics of their singlet and triplet energy levels. In the solid state, tetracene exhibits high yields of triplet formation through SF, raising great interest about the underlying mechanisms. To address this discrepancy, we designed and prepared a novel molecular system based on a hexaphenylbenzene core decorated with 2 to 6 tetracene chromophores. The spatial arrangement of tetracene units, induced by steric hindrance in the central part, dictates through-space coupling, making it a relevant model for solid-state chromophore organization. We then revealed a remarkable increase in SF quantum yield with the number of tetracenes, reaching quantitative (196 %) triplet pair formation in hexamer. We observed a short-lived correlated triplet pair and limited magnetic effects, indicating ineffective triplet dissociation in these through-space coupled systems. These findings emphasize the crucial role of the number of chromophores involved and the interchromophore arrangement for the SF efficiency. The insights gained from this study will aid designing more efficient and technology-compatible SF systems for applications in photovoltaics.

2.
ACS Omega ; 9(7): 7937-7957, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38405476

RESUMEN

In the context of global climate change, significant attention is being directed toward renewable energy and the pivotal role of carbon capture and storage (CCS) technologies. These innovations involve secure CO2 storage in deep saline aquifers through structural and capillary processes, with the interfacial tension (IFT) of the CO2-brine system influencing the storage capacity of formations. In this study, an extensive data set of 2811 experimental data points was compiled to model the IFT of impure and pure CO2-brine systems. Three white-box machine learning (ML) methods, namely, genetic programming (GP), gene expression programming (GEP), and group method of data handling (GMDH) were employed to establish accurate mathematical correlations. Notably, the study utilized two distinct modeling approaches: one focused on impurity compositions and the other incorporating a pseudocritical temperature variable (Tcm) offering a versatile predictive tool suitable for various gas mixtures. Among the correlation methods explored, GMDH, employing five inputs, exhibited exceptional accuracy and reliability across all metrics. Its mean absolute percentage error (MAPE) values for testing, training, and complete data sets stood at 7.63, 7.31, and 7.38%, respectively. In the case of six-input models, the GEP correlation displayed the highest precision, with MAPE values of 9.30, 8.06, and 8.31% for the testing, training, and total data sets, respectively. The sensitivity and trend analyses revealed that pressure exerted the most significant impact on the IFT of CO2-brine, showcasing an adverse effect. Moreover, an impurity possessing a critical temperature below that of CO2 resulted in an elevated IFT. Consequently, this relationship leads to higher impurity concentrations aligning with lower Tcm values and subsequently elevated IFT. Also, monovalent and divalent cation molalities exhibited a growing influence on the IFT, with divalent cations exerting approximately double the influence of monovalent cations. Finally, the Leverage approach confirmed both the reliability of the experimental data and the robust statistical validity of the best correlations established in this study.

3.
Radiol Med ; 128(12): 1460-1471, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37747668

RESUMEN

PURPOSE: To establish and validate a multiparameter prediction model for early recurrence after radical resection in patients diagnosed with combined hepatocellular-cholangiocarcinoma (cHCC-CC). MATERIALS AND METHODS: This study reviewed the clinical characteristics and preoperative CT images of 143 cHCC-CC patients who underwent radical resection from three institutions. A total of 110 patients from institution 1 were randomly divided into training set (n = 78) and testing set (n = 32) in the ratio of 7-3. Univariate and multivariate logistic regression analysis were used to construct a nomogram prediction model in the training set, which was internally and externally validated in the testing set and the validation set (n = 33) from institutions 2 and 3. The area under the curve (AUC) of receiver operating characteristics (ROC), decision curve analysis (DCA), and calibration analysis were used to evaluate the model's performance. RESULTS: The combined model demonstrated superior predictive performance compared to the clinical model, the CT model, the pathological model and the clinic-CT model in predicting the early postoperative recurrence. The nomogram based on the combined model included AST, ALP, tumor size, tumor margin, arterial phase peritumoral enhancement, and MVI (Microvascular invasion). The model had AUCs of 0.89 (95% CI 0.81-0.96), 0.85 (95% CI 0.70-0.99), and 0.86 (95% CI 0.72-1.00) in the training, testing, and validation sets, respectively, indicating high predictive power. DCA showed that the combined model had good clinical value and correction effect. CONCLUSION: A nomogram incorporating clinical characteristics and preoperative CT features can be utilized to effectively predict the early postoperative recurrence in patients with cHCC-CC.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/cirugía , Nomogramas , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/cirugía , Colangiocarcinoma/diagnóstico por imagen , Colangiocarcinoma/cirugía , Neoplasias de los Conductos Biliares/diagnóstico por imagen , Neoplasias de los Conductos Biliares/cirugía , Conductos Biliares Intrahepáticos , Tomografía Computarizada por Rayos X , Estudios Retrospectivos
5.
Nat Commun ; 14(1): 5248, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640729

RESUMEN

The rotation of a C = C bond in an alkene can be efficiently accelerated by creating the high-strain ground state and stabilizing the transition state of the process. Herein, the synthesis, structures, and properties of several highly twisted alkenes are comprehensively explored. A facile and practical synthetic approach to target molecules is developed. The twist angles and lengths of the central C = C bonds in these molecules are 36-58° and 1.40-1.43 Å, respectively, and confirmed by X-ray crystallography and DFT calculations. A quasi-planar molecular half with the π-extended substituents delivers a shallow rotational barrier (down to 2.35 kcal/mol), indicating that the rotation of the C = C bond is as facile as that of the aryl-aryl bond in 2-flourobiphenyl. Other versatile and unique properties of the studied compounds include a broad photoabsorption range (from 250 up to 1100 nm), a reduced HOMO-LUMO gap (1.26-1.68 eV), and a small singlet-triplet energy gap (3.65-5.68 kcal/mol).

6.
J Phys Chem Lett ; 14(9): 2395-2401, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36856331

RESUMEN

The Huang-Rhys (HR) factor, a dimensionless factor that characterizes electron-phonon (vibronic) coupling, has been extensively employed to investigate a variety of material properties. In the same spirit, we propose a quantity called the polaritonic HR factor to quantitatively describe the effects of (i) light-matter coupling induced by permanent dipoles and (ii) dipole self-energy. The former leads to polaritonic displacements, while the latter is associated with the electronic coupling shift named reorganization dipole self-coupling. In the framework of macroscopic quantum electrodynamics, our theory can evaluate the polaritonic HR factor, reorganization dipole self-coupling, and modified light-matter coupling strength in an arbitrary dielectric environment without free parameters, whose magnitudes are in good agreement with the previous experimental results. We believe that this study provides a useful perspective on understanding and quantifying light-matter interactions in media.

7.
Acc Chem Res ; 56(6): 689-699, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36882976

RESUMEN

ConspectusDesigning bright and efficient near-infrared (NIR) emitters has drawn much attention due to numerous applications ranging from biological imaging, medical therapy, optical communication, and night-vision devices. However, polyatomic organic and organometallic molecules with energy gaps close to the deep red and NIR regime are subject to dominant nonradiative internal conversion (IC) processes, which drastically reduces the emission intensity and exciton diffusion length of organic materials and hence hampers the optoelectronic performances. To suppress nonradiative IC rates, we suggested two complementary approaches to solve the issues: exciton delocalization and molecular deuteration. First, exciton delocalization efficiently suppresses the molecular reorganization energy through partitioning to all aggregated molecules. According to the IC theory together with the effect of exciton delocalization, the simulated nonradiative rates with the energy gap ΔE = 104 cm-1 decrease by around 104 fold when the exciton delocalization length equals 5 (promoting vibronic frequency ωl = 1500 cm-1). Second, molecular deuterations reduce Franck-Condon vibrational overlaps and vibrational frequencies of promoting modes, which decreases IC rates by 1 order of magnitude in comparison to the rates of nondeuterated molecules under ΔE of 104 cm-1. Although deuteration of molecules has long been attempted to increase emission intensity, the results have been mixed. Here, we provide a robust derivation of the IC theory to demonstrate its validity, especially to emission in the NIR region.The concepts are experimentally verified by the strategic design and synthesis of a class of square-planar Pt(II) complexes, which form crystalline aggregates in vapor deposited thin films. The packing geometries are well characterized by the grazing angle X-ray diffraction (GIXD), showing domino-like packing arrangements with the short ππ separation of 3.4-3.7 Å. Upon photoexcitation, such closely packed assemblies exhibit intense NIR emission maximized in the 740-970 nm region through metal-metal-to-ligand charge transfer (MMLCT) transition with unprecedented photoluminescent quantum yield (PLQY) of 8-82%. To validate the existence of exciton delocalization, we applied time-resolved step-scan Fourier transform UV-vis spectroscopy to probe the exciton delocalization length of Pt(II) aggregates, which is 5-9 molecules (2.1-4.5 nm) assuming that excitons mainly delocalized along the direction of ππ stacking. According to the dependence of delocalization length vs simulated IC rates, we verify that the observed delocalization lengths contribute to the high NIR PLQY of the aggregated Pt(II) complexes. To probe the isotope effect, both partially and completely deuterated Pt(II) complexes were synthesized. For the case of the 970 nm Pt(II) emitter, the vapor deposited films of per-deuterated Pt(II) complexes exhibit the same emission peak as that of the nondeuterated one, whereas PLQY increases ∼50%. To put the fundamental studies into practice, organic light-emitting diodes (OLEDs) were fabricated with a variety of NIR Pt(II) complexes as the emitting layer, showing the outstanding external quantum efficiencies (EQEs) of 2-25% and the remarkable radiances 10-40 W sr-1 m-2 at 740-1002 nm. The prominent device performances not only successfully prove our designed concept but also reach a new milestone for highly efficient NIR OLED devices.This Account thus summarizes our approaches about how to boost the efficiency of the NIR emission of organic molecules from an in-depth fundamental basis, i.e., molecular design, photophysical characterization, and device fabrication. The concept of the exciton delocalization and molecular deuteration may also be applicable to a single molecular system to achieve efficient NIR radiance, which is worth further investigation in the future.

8.
Huan Jing Ke Xue ; 44(2): 944-953, 2023 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-36775617

RESUMEN

In order to clarify the pollution characteristics of PAHs in suburban agricultural soils, the content of 16 types of PAHs was measured in agricultural soils with different land use types (paddy fields, vegetable fields, and forest land) in the suburbs of Nanjing. The results showed that acenaphthene (Acy) was not detected in any soil samples. The concentration of 15 PAHs in agricultural soil in suburban Nanjing ranged from 24.49 to 925.54 µg·kg-1, with an average concentration of 259.88 µg·kg-1. In different land use types, the order of PAHs concentration in soil from high to low was:forest land>paddy fields>vegetable fields, and the high-ring PAHs content was dominant in general. The effects of different soil physicochemical properties on PAHs showed that there was a certain correlation between soil organic carbon (TOC) and clay (clay) content and PAHs, whereas pH and total nitrogen (TN) had no significant correlation with PAHs. The toxic equivalence method and CSI index method were used for ecological risk assessment, which showed that the ecological risk of PAHs in agricultural soils in suburban Nanjing was relatively small; however, the ecological risk of PAHs in forest land should be given some attention, and supervision should be strengthened. Health risk assessment using incremental lifetime cancer risk (ILCR) showed that the threat to the health of children was slightly greater than that of adults, and the CR of forest land was significantly higher than that of vegetable and paddy fields, though still within an acceptable range. Uncertain health assessments were performed in adults, showing that risk analyses of deterministic health risks underestimated the health risks of PAHs. The results of sensitivity analysis showed that the input parameter that had the greatest impact on the total variance of the total carcinogenic risk CR was the exposure frequency EF (50.7%), followed by the pollutant concentration CS (43.3%).


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Adulto , Niño , Humanos , Suelo/química , Monitoreo del Ambiente/métodos , Hidrocarburos Policíclicos Aromáticos/análisis , Arcilla , Carbono/análisis , Contaminantes del Suelo/análisis , Medición de Riesgo , Verduras , China
9.
Angew Chem Int Ed Engl ; 62(16): e202300815, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36825300

RESUMEN

The exploration of deactivation mechanisms for near-infrared(NIR)-emissive organic molecules has been a key issue in chemistry, materials science and molecular biology. In this study, based on transient absorption spectroscopy and transient grating photoluminescence spectroscopy, we demonstrate that the aggregated PtII complex 4H (efficient NIR emitter) exhibits collective out-of-plane motions with a frequency of 32 cm-1 (0.96 THz) in the excited states. Importantly, similar THz characteristics were also observed in analogous PtII complexes with prominent NIR emission efficiency. The conservation of THz motions enables excited-state deactivation to proceed along low-frequency vibrational coordinates, contributing to the suppression of nonradiative decay and remarkable NIR emission. These novel results highlight the significance of excited-state vibrations in nonradiative processes, which serve as a benchmark for improving device performance.

10.
J Phys Chem Lett ; 14(1): 122-131, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36574643

RESUMEN

The photon energy-dependent selectivity of photocatalytic CO2-to-CO conversion by CsPbBr3 nanocrystals (NCs) and CsPbBr3/g-C3N4 nanoheterostructures (NHSs) was demonstrated for the first time. The surficial capping ligands of CsPbBr3 NCs would adsorb CO2, resulting in the carboxyl intermediate to process the CO2-to-CO conversion via carbene pathways. The type-II energy band structure at the heterojunction of CsPbBr3/g-C3N4 NHSs would separate the charge carriers, promoting the efficiency in photocatalytic CO2-to-CO conversion. The electron consumption rate of CO2-to-CO conversion for CsPbBr3/g-C3N4 NHSs was found to intensively depend on the rate constant of interfacial hole transfer from CsPbBr3 to g-C3N4. An in situ transient absorption spectroscopy investigation revealed that the half-life time of photoexcited electrons in optimized CsPbBr3/g-C3N4 NHS was extended two times more than that in the CsPbBr3 NCs, resulting in the higher probability of charge carriers to carry out the CO2-to-CO conversion. The current work presents important and novel insights of semiconductor NHSs for solar energy-driven CO2 conversion.

11.
J Phys Chem Lett ; 13(41): 9695-9702, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36219782

RESUMEN

Richard Feynman stated that "The theory behind chemistry is quantum electrodynamics". However, harnessing quantum-electrodynamic (QED) effects to modify chemical reactions is a grand challenge and currently has only been reported in experiments using cavities due to the limitation of strong light-matter coupling. In this article, we demonstrate that QED effects can significantly enhance the rate of electron transfer (ET) by several orders of magnitude in the absence of cavities, which is implicitly supported by experimental reports. To understand how cavity-free QED effects are involved in ET reactions, we incorporate the effect of infinite one-photon states into Marcus theory, derive an explicit expression for the rate of radiative ET, and develop the concept of "electron transfer overlap". Moreover, QED effects may lead to a barrier-free ET reaction whose rate is dependent on the energy-gap power law. This study thus provides new insights into fundamental chemical principles, with promising prospects for QED-based chemical reactions.

12.
J Neuroeng Rehabil ; 19(1): 64, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35761285

RESUMEN

BACKGROUND: Wearable devices have been found effective in training ankle control in patients with neurological diseases. However, the neural mechanisms associated with using wearable devices for ankle training remain largely unexplored. This study aimed to investigate the ankle tracking performance and brain white matter changes associated with ankle tracking learning using a wearable-device system and the behavior-brain structure relationships in middle-aged and older adults. METHODS: Twenty-six middle-aged and older adults (48-75 years) participated in this study. Participants underwent 5-day ankle tracking learning with their non-dominant foot using a custom-built ankle tracking system equipped with a wearable sensor and a sensor-computer interface for real-time visual feedback and data acquisition. Repeated and random sequences of target tracking trajectories were both used for learning and testing. Ankle tracking performance, calculated as the root-mean-squared-error (RMSE) between the target and actual ankle trajectories, and brain diffusion spectrum MR images were acquired at baseline and retention tests. The general fractional anisotropy (GFA) values of eight brain white matter tracts of interest were calculated to indicate their integrity. Two-way (Sex × Time) mixed repeated measures ANOVA procedures were used to investigate Sex and Time effects on RMSE and GFA. Correlations between changes in RMSE and those in GFA were analyzed, controlling for age and sex. RESULTS: After learning, both male and female participants reduced the RMSE of tracking repeated and random sequences (both p < 0.001). Among the eight fiber tracts, the right superior longitudinal fasciculus II (R SLF II) was the only one which showed both increased GFA (p = 0.039) after learning and predictive power of reductions in RMSE for random sequence tracking with its changes in GFA [ß = 0.514, R2 change = 0.259, p = 0.008]. CONCLUSIONS: Our findings implied that interactive tracking movement learning using wearable sensors may place high demands on the attention, sensory feedback integration, and sensorimotor transformation functions of the brain. Therefore, the SLF II, which is known to perform these brain functions, showed corresponding neural plasticity after such learning, and its plasticity also predicted the behavioral gains. The SLF II appears to be a very important anatomical neural correlate involved in such learning paradigms.


Asunto(s)
Dispositivos Electrónicos Vestibles , Sustancia Blanca , Anciano , Tobillo , Encéfalo , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sustancia Blanca/diagnóstico por imagen
13.
Nutrients ; 14(11)2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35684132

RESUMEN

In this study, we aimed to evaluate the effect of Nobiletin (NOB) on the placenta of Sprague-Dawley (SD) rats that had undergone reduced uterine perfusion pressure (RUPP) surgery and to evaluate the safety of NOB intervention during pregnancy. The results showed that NOB alleviated placental hypoxia, attenuated placental cell apoptosis, and inhibited placental damage in RUPP rats. No side effect of NOB intervention during pregnancy was observed. BeWo cell lines with P53 knockdown were then constructed using lentiviral transfection, and the P53 signaling pathway was found to be essential for NOB to reduce hypoxia-induced apoptosis of the BeWo cell lines. In summary, NOB attenuated hypoxia-induced placental damage by regulating the P53 signaling pathway, and those findings may contribute some insights into the role of NOB in placental development and the prevention of placental-related diseases.


Asunto(s)
Placenta , Preeclampsia , Animales , Femenino , Flavonas , Humanos , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Isquemia/tratamiento farmacológico , Isquemia/metabolismo , Placenta/metabolismo , Preeclampsia/prevención & control , Embarazo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
14.
Ying Yong Sheng Tai Xue Bao ; 33(2): 467-476, 2022 Feb.
Artículo en Chino | MEDLINE | ID: mdl-35229521

RESUMEN

To assess the high-resolution digital soil mapping method for small watersheds in hilly areas, we explored the role of landscape classification and multiscale micro-landform features in predicting soil pH, soil clay content (SCC), and cation exchange capacity (CEC). Geomorphons (GM) terrain classification method was used to create landform units. The traditional digital elevation model (DEM) derivatives and remote sensing variables were employed for different combinations with landscape and micro-landform classification variables, with further compa-rison and analysis being conducted. In addition, three machine learning techniques, including support vector machine (SVM), partial least squares regression (PLSR), and random forest (RF), were used to build prediction models. The best method was then selected, and then combined with regression kriging by modeling spatial structure of the model residuals. The results showed that the application of landscape and multiscale micro-landform classification variables effectively improved the prediction accuracy of pH, SCC, and CEC by 18.8%, 8.2% and 8.7%, respectively. The map of landscape classification that contained vegetation coverage information had greater model contribution than land use data. The GM classification map with 5 m resolution was more suitable for high-precision DSM than those with lower resolution. The composite model of RF performed the best in predicting SCC, while the pH and CEC were not suitable for adding the residual regression kriging on the basis of RF model. Finally, the combination of landscape and multiscale micro-landform classification variables, DEM derivatives and remote sensing variables had the highest prediction accuracy for all the three soil properties. This result indicated that multivariable contained more effective soil information than single data source for rolling areas. The landscape variables composed of GM and surface classified data explained about 40% of the spatial variation of tested soil attributes in hilly area. Therefore, multi-resolution GM and landscape classified variables could be included into the construction of prediction model in research of soil mapping.


Asunto(s)
Aprendizaje Automático , Suelo , Análisis de los Mínimos Cuadrados , Suelo/química , Análisis Espacial
15.
Sensors (Basel) ; 22(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35161761

RESUMEN

Gas sensing performance characterization systems are essential for the research and development of gas sensing materials and devices. Although existing systems are almost completely automatically operated, the accuracies of gas concentration control and of pressure control and the ability to simultaneously detect different sensor signals still require improvement. In this study, a high-precision gas sensing material characterization system is developed based on vacuum technology, with the objective of enabling the precise and simultaneous measurement of electrical responses. Because of the implementation of vacuum technology, the gas concentration control accuracy is improved more than 1600 times, whereas the pressure of the test ambient condition can be precisely adjusted between vacuum and 1.2 bar. The vacuum-assisted gas-exchanging mechanism also enables the sensor response time to be determined more accurately. The system is capable of performing sensitivity, selectivity, and stability tests and can control the ambient relative humidity in a precise manner. More importantly, the levels of performance of three different optical signal measurement set-ups were investigated and compared in terms of detection range, linearity, noise, and response time, based on which of their scopes of application were proposed. Finally, single-period and cyclical tests were performed to examine the ability of the system to detect optical and electrical responses simultaneously, both at a single wavelength and in a spectral region.

16.
Huan Jing Ke Xue ; 42(11): 5510-5518, 2021 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-34708990

RESUMEN

In order to assess the pollution of polycyclic aromatic hydrocarbons(PAHs) in a suburban farmland soil, 29 sampling sites were collected around Nanjing according to the grid method, and the contents of 15 different PAHs were determined. Acenaphthene(Ace) was not detected in any of the samples. The total content of PAHs in farmland soil ranged from 24.49 to 750.04 µg·kg-1, with an average of 226.64 µg·kg-1. The spatial distribution of high-ring PAHs, the main PAHs in the farmland soil, was similar to that of total PAHs. There was no significant correlation between PAHs and soil organic matter(SOM), pH, cation exchange capacity(CEC), and total nitrogen(TN), whereas bulk density and low ring PAHs were significantly correlated. The results of source apportionment show that the main source of PAHs in the farmland soil is a mixture of combustion and petroleum. The contamination severity index(CSI) index shows that the PAHs does not pose an ecological risk. The results of the health risk assessment show that there is no potential carcinogenic risk to children or adults, and the main sequence of exposure is skin contact>ingestion>inhalation.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Adulto , Niño , China , Monitoreo del Ambiente , Granjas , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis
17.
Org Lett ; 23(22): 8794-8798, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34714080

RESUMEN

A series of diindeno[2,1-b:2',1'-h]biphenylenes with open-shell singlet ground states and interesting properties were prepared. The studied compounds consist of p-quinodimethane moieties, which suffer from geometric perturbation with bond angles of around 90°. The substituent effects on structural parameters, local aromaticity, and properties were systematically explored.

18.
J Phys Chem Lett ; 12(31): 7482-7489, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34342467

RESUMEN

In organic and organometallic solids, upon electronic excitation, most intermolecular structural relaxations follow a pathway along the π-π stacking direction or metal-metal bond with significant coupling strength. Differently, we discovered that the self-assembled platinum(II) complexes, Pt(fppz)2, exhibit an unusual interchain contraction. The ground-state and excited-state multiple local minima were distinguished by temperature-dependent excitation/emission spectra, indicating the existence of multiple local minima. The time-resolved emission decay revealed the excited-state structural relaxation lifetime with τobs = 41 ns at 298 K. Temperature-dependent X-ray diffraction analysis showed that the packing geometries contract 0.6 Å along the interchain direction (a-axis) at 50 K compared to the geometries at 298 K. Such structural displacements render the slow internal conversion rate in the excited states. We thus demonstrate the correlation between the packing geometries and the excited-state dynamics of the self-assembled Pt(II) complexes, shedding light on the unique direction of interchain structural deformation of the molecular aggregates.

19.
J Phys Chem A ; 125(30): 6611-6620, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34308634

RESUMEN

Finding the relation between thermodynamics and kinetics for a reaction is of fundamental importance. Here, the thermodynamics and kinetics correlation of excited-state intramolecular proton transfer (ESIPT) was investigated by the TD-DFT calculation under the CAM-B3LYP/6-311+G** level. We choose the family 2-(2'-aminophyenyl)benzothiazole and its amino derivatives as paradigms, which all possess the NH-type intramolecular hydrogen bond (H-bond), and investigate the corresponding ESIPT reaction. The H-bond strength can be systematically tuned, so both activation energy ΔG‡ and free energy difference between proton transfer tautomer (T*, product) and normal species (N*, reactant) ΔGT*-N* can be varied. To minimize the environmental interference such as solvent external H-bond and polarity perturbation, a nonpolar solvent such as cyclohexane is chosen as a bath with a polarizable continuum solvation model for the calculation. As a result, the comprehensive computational approach reveals a linear relationship between ΔGT*-N* and ΔG‡, which can be expressed as ΔG‡ = ΔG0 + αΔGT*-N*. The fundamental insight is reminiscent of the Bell-Evans-Polanyi (BEP) principle where α represents the character of the position of the transition state along the proton motion coordinate. In other words, the more exergonic the ESIPT reaction is, the faster the proton transfer rate can be observed. To verify that such a correlation is not a sporadic event, another ESIPT family with an -OH proton, 1-hydroxy-11H-benzo[b]fluoren-11-one and its derivatives, was also investigated and proved to follow the BEP principle as well. Unlike the quantum mechanics description of proton transfer where either proton tunneling is dominant or solute/solvent is coupled in ESIPT, this work demonstrates that reaction kinetics and thermodynamics are strongly correlated within the same class of ESIPT molecules with an intrinsic barrier free from solvent perturbation, being faster with the more exergonic reaction.

20.
Chemistry ; 27(34): 8678-8683, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-33860557

RESUMEN

A series of new [2,2]fluorenophanes has been synthesized and characterized; among them, molecules of crystallographically asymmetric anti-[2.2](1,4)(4,1)fluorenophane (K2C-2) aggregate to form one-dimensional supramolecular chain structures through effective intermolecular π-π overlapping. This, in combination with the synergistic intramolecular π-π interaction, leads to prominent dual emission mediated by charge transfer (CT) exciton delocalization. Support of this new insight is given by mapping the transition density along the π-π packing direction where the intramolecular excitation and intermolecular CT coexist in K2C-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...