Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hortic Res ; 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35147189

RESUMEN

Very-long-chain (VLC) alkanes are the main wax compounds of tomato fruit and leaf. ECERIFERUM1 (CER1) and ECERIFERUM3 (CER3) are the two key genes involved in VLC alkane biosynthesis in Arabidopsis thaliana. However, the CER1 and CER3 homologous genes in tomato have not been investigated and their exact biological function remains unknown. We analyzed the wax profiles in tomato leaves and fruits at different growth stages, and characterized the CER1 and CER3 homologous genes. VLC alkanes were the predominant wax compounds both in the leaf and fruit at all developmental stages. We identified five CER1 homologs and two CER3 homologs in tomato, which were designated as SlCER1-1 to SlCER1-5 and SlCER3-1 and SlCER3-2 respectively. The genes exhibited tissue- and organ-dependent expression patterns and were induced by abiotic stresses. SlCER1-1 was localized to the endoplasmic reticulum (ER), which is also the main site of wax biosynthesis. Silencing the SlCER1-1 gene in tomato significantly reduced the amounts of n-Alkanes and branched alkanes, whereas its overexpression in Arabidopsis had the opposite effect. Under drought stress, both n-Alkanes and branched alkanes increased significantly in wild-type but not the SlCER1-1 RNAi tomato plants. Furthermore, SlCER1-1 silencing also increased the cuticular permeabilities of the leaves and fruits. In conclusion, SlCER1-1 is involved in wax alkane biosynthesis in tomato and plays an important role in the drought tolerance and fruit storability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA