Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; 24(21): e202300002, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37535823

RESUMEN

Environmentally friendly methods for silver nanoparticles (AgNPs) synthesis without the use of hazardous chemicals have recently drawn attention. In this work, AgNPs have been synthesized by microwave irradiation using only honey solutions or aqueous fresh pink radish extracts. The concentrations of honey, radish extract, AgNO3 and pH were varied. AgNPs presented mean sizes between 7.0 and 12.8 nm and were stable up to 120 days. The AgNPs were employed as co-catalyst (TiO2 @AgNPs) to increase the hydrogen photogeneration under UV-vis and only visible light irradiation, when compared to pristine TiO2 NPs. The prepared photocatalyst also showed hydrogen generation under visible light. Additionally, AgNPs were used to assemble a nanoplasmonic biosensor for the biodetection of extremely low concentrations of streptavidin, owing to its specific binding to biotin. It is shown here that green AgNPs are versatile nanomaterials, thus being potential candidates for hydrogen photogeneration and biosensing applications.


Asunto(s)
Nanopartículas del Metal , Plata , Extractos Vegetales , Escherichia coli , Antibacterianos
2.
ACS Appl Mater Interfaces ; 13(49): 59252-59262, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34851611

RESUMEN

The excellent performance of hybrid metal-halide perovskite nanocrystals (NCs) contrasts with their unsatisfactory stability in a high-humidity environment or water. Herein, polymer composite lead-halide perovskites (LHPs) NCs were prepared by casting or spin-coating to produce a high fluorescence yield and a fully water-resistant material. Poly(l-lactide) (PLla), polypropylene glycol (PPGly), and polysulfone (PSU) commercial polymers were used to prepare suspensions of MAPbBr3-HDA NCs (MA: CH3NH3; HDA: hexadecylamine). The MAPbBr3-HDA@PLla suspension exhibited a maximum fluorescence quantum yield of 93% compared to 43% for the pristine MAPbBr3-HDA NCs. Strong emissions around 528 nm were also observed, with the same full width at half maximum value of 20 nm, demonstrating the successful fabrication of brightly luminescent LHP NCs@polymer combinations. Time-resolved photoluminescence measurements directly observed the enhanced spontaneous emission of the NCs induced by the polymeric environment. However, the cast films of MAPbBr3-HDA NCs mixed with PLla or PPGly did not resist water immersion. On the contrary, MAPbBr3-HDA@PPGly/PSU films containing well-dispersed ∼10 nm LHP NCs retained a bright green fluorescence emission even after 18 months under air conditions or water immersion up to 45 °C. From water contact angle measurements, profilometry, and X-ray photoelectron spectroscopy data, it could be assumed that the slightly hydrophobic PSU polymer is responsible for the high water stability of the fluorescent films, which avoids MAPbBr3-HDA NC degradation. This work shows that the LHP NC dispersion in dissolved commodity polymers holds great promise toward the long-term stability of LHP NC composites for the future development of wearable electronic devices and other waterproof applications.

3.
Langmuir ; 31(11): 3465-72, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25714008

RESUMEN

Textures that resemble typical fern or bracken plant species (dendrite structures) were fabricated for liquid repellency by dipping copper substrates in a single-step process in solutions containing AgNO3 or by a simple spray liquid application. Superhydrophobic surfaces were produced using a solution containing AgNO3 and trimethoxypropylsilane (TMPSi), and superomniphobic surfaces were produced by a two-step procedure, immersing the copper substrate in a AgNO3 solution and, after that, in a solution containing 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTES). The simple functionalization processes can also be used when the superomniphobic surfaces were destroyed by mechanical stress. By immersion of the wrecked surfaces in the above solutions or by the spray method and soft heating, the copper substrates could be easily repaired, regenerating the surfaces' superrepellency to liquids. The micro- and nanoroughness structures generated on copper surfaces by the deposition of silver dendrites functionalized with TMPSi presented apparent contact angles greater than 150° with a contact angle hysteresis lower than 10° when water was used as the test liquid. To avoid total wettability with very low surface tension liquids, such as rapeseed oil and hexadecane, a thin perfluorinated coating of poly(tetrafluoroethylene) (PTFE), produced by physical vapor deposition, was used. A more efficient perfluorinated coating was obtained when PFDTES was used. The superomniphobic surfaces produced apparent contact angles above 150° with all of the tested liquids, including hexadecane, although the contact angle hysteresis with this liquid was above 10°. The coupling of dendritic structures with TMPSi/PTFE or directly by PFDTES coatings was responsible for the superrepellency of the as-prepared surfaces. These simple, fast, and reliable procedures allow the large area, and cost-effective scale fabrication of superrepellent surfaces on copper substrates for various industrial applications with the advantage of easy recovery of the surface repellency after damage.

4.
Dalton Trans ; 44(6): 2827-34, 2015 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-25531917

RESUMEN

Well-distributed Ru nanoparticles (Ru-NPs) were produced over Al(2)O(3) supports modified with covalently anchored imidazolium ionic liquids (ILs) containing different anions and cation lateral alkyl chain lengths by simple sputtering from a Ru foil. These Ru-NPs were active catalysts for the hydrogenation of benzene. Furthermore, depending on the nature of the IL used to modify the support (hydrophilic or hydrophobic), different catalytic behaviours were observed. Turnover numbers (TON) as high as 27 000 with a turnover frequency (TOF) of 2.73 s(-1) were achieved with Ru-NPs of 6.4 nm supported in Al(2)O(3) modified with an IL containing the N(SO(2)CF(3))2(-) anion, whereas higher initial cyclohexene selectivities (ca. 20% at 1% benzene conversion) were attained for Ru-NPs of 6.6 nm in the case where Cl(-) and BF(4)(-) anions were used. Such observations strongly suggest that thin layers of ILs surround the NP surface, modifying the reactivity of these catalytic systems. These findings open a new window of opportunity in the development of size-controlled Ru-NPs with tuneable reactivity.

5.
ACS Appl Mater Interfaces ; 6(6): 4223-32, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24576018

RESUMEN

Polymerization of (4-(methacryloyloxy)phenyl)dimethylsulfoniumtriflate (MAPDST), as a key monomer containing the radiation sensitive sulfonium functionality, with various other monomers such as methyl methacrylate (MMA), 4-carboxy styrene (STYCOOH), N-vinyl carbazole (NVK) in different molar ratios via free-radical polymerization method is described. This methodology led to the development of a small chemical library of six different radiation sensitive polymers for lithography applications. Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy identified the reaction products as MAPDST homopolymer and MAPDST-MMA, MAPDST-STYCOOH, MAPDST-NVK copolymers. Molecular weights were obtained from gel permeation chromatography and the decomposition temperature (Td) values were determined using thermogravimetric analysis (TGA). The effect of extreme ultraviolet (EUV) irradiation on a thin poly(MAPDST) film was investigated using monochromatic synchrotron excitation. These new polymeric materials were also exposed to electron-beam lithography (EBL) and extreme ultraviolet lithography (EUVL) to achieve 20-nm line patterns.

6.
ACS Appl Mater Interfaces ; 3(10): 3981-7, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21919435

RESUMEN

Micro- and nanostructures of Ti-γCu (γ = 0, 30, 50, 70, and 100 wt %) intermetallic alloys were produced through a single anodization step. It was found that the original alloy composition influences the final oxide morphology obtained after anodization which presented formation of a microstructure with nanotubes, nanoparticles or nanopillars on the surface. Pure Ti and Cu oxide metals and their alloys presented hydrophilic or superhydrophilic properties immediately after anodization. When the anodized pure metal and/or Ti-γCu surfaces were functionalized with trimethoxypropylsilane (TPMSi), by dipping and coating with a thin perfluorinated layer, the treated substrates became in all cases superhydrophobic (water contact angles in the range of 152-166°), showing excellent self-cleaning properties with hysteresis below 3°. These results can be explained by a combination of nanomicro morphologies with low surface energy compounds in the topmost monolayers. The decrease in hysteresis was associated with a higher M-OH bond concentration on the anodized surfaces, which allowed for more complete TMPSi coating coverage. This study also indicates that easy and effective fabrication of superhydrophobic surfaces in pure metals and alloys is possible without involving traditional multistep processes.

7.
ACS Appl Mater Interfaces ; 3(4): 1359-65, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21443251

RESUMEN

Self-organized TiO(2) nanotube (NT) arrays were produced by anodization in ethylene glycol (EG) electrolytes containing 1-n-butyl-3-methyl-imidazolium tetrafluoroborate (BMI.BF(4)) ionic liquid and water. The morphology of the as-formed NTs was considerably affected by changing the anodization time, voltage, and water and ionic liquid electrolyte concentrations. In general, a nanoporous layer was formed on the top surface of the TiO(2) NTs, except for anodization at 100 V with 1 vol % of BMI.BF(4), where the NT's mouth was revealed. The length and bottom diameter of the NTs as well as the pore diameter of the top layer showed a linear relationship with increased anodization voltage. These TiO(2) NTs were tested as photocatalysts for methyl orange photodegradation and hydrogen evolution from water/methanol solutions by UV light irradiation. The results show that the TiO(2) NTs obtained by anodization in EG/H(2)O/BMI.BF(4) electrolytes are active and efficient for both applications.


Asunto(s)
Nanotubos/química , Titanio , Compuestos Azo/metabolismo , Hidrógeno/metabolismo , Líquidos Iónicos , Nanotubos/ultraestructura , Procesos Fotoquímicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...