Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Appl Oral Sci ; 27: e20180157, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30624467

RESUMEN

OBJECTIVES: The aim of this study was to evaluate the influence of surfactants 0.2% or 0.1% cetrimide (Cet) or 0.008% benzalkonium chloride (BAK) on 2.5% calcium hypochlorite (Ca(OCl)2), and compare to sodium hypochlorite (NaOCl), regarding the properties of pH, free chlorine content, surface tension, contact angle, pulp dissolution and antimicrobial activity. MATERIAL AND METHODS: The pH and free chlorine content were evaluated by digital pHmeter and by titration, respectively. Surface tension was measured by the platinum ring technique with a Du Noüy tensiometer. The solution's contact angle in human dentin surfaces was checked by Drop Shape Analyzer software. Bovine pulps were used for pulp dissolution analysis and the dissolving capacity was expressed by percent weight loss. Antimicrobial activity over Enterococcus faecalis was evaluated by the agar diffusion method. RESULTS: Surfactants addition to Ca(OCl)2 and NaOCl did not alter the pH, free chlorine content and pulp dissolution properties. Ca(OCl)2 had the highest surface tension among all tested solutions. When surfactants were added to Ca(OCl)2 and NaOCl, there was a significant reduction of surface tension and contact angle values. The addition of 0.2% or 0.1% Cet enhanced antimicrobial activity of both Ca(OCl)2 and NaOCl. CONCLUSION: Surfactant addition to 2.5% Ca(OCl)2 has shown acceptable outcomes for pH, free chlorine content, surface tension, contact angle, pulp dissolution and antimicrobial activity. Furthermore, the addition of 0.2% Cet showed better results for all tested properties.


Asunto(s)
Compuestos de Benzalconio/química , Compuestos de Calcio/química , Cetrimonio/química , Irrigantes del Conducto Radicular/química , Hipoclorito de Sodio/química , Tensoactivos/química , Análisis de Varianza , Animales , Compuestos de Benzalconio/farmacología , Compuestos de Calcio/farmacología , Bovinos , Cetrimonio/farmacología , Cloro/análisis , Pulpa Dental/efectos de los fármacos , Dentina/efectos de los fármacos , Enterococcus faecalis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Ensayo de Materiales , Valores de Referencia , Reproducibilidad de los Resultados , Hipoclorito de Sodio/farmacología , Estadísticas no Paramétricas , Propiedades de Superficie , Tensoactivos/farmacología
2.
RSC Adv ; 8(20): 10930-10938, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35541508

RESUMEN

A detailed investigation to understand the mechanism of the resist action at a fundamental level is essential for future Extreme Ultraviolet Lithography (EUVL) resists. The photodynamics study of a newly developed hybrid nonchemically amplified 2.15%-MAPDSA-MAPDST resist using synchrotron radiation excitation at 103.5 eV (12 nm) is presented. Antimony was incorporated in the resist as a heavy metal absorption center in the form of antimonate (2.15%). The results showed the fast decomposition rate of the radiation sensitive sulfonium triflate. HR-XPS and sulfur L-NEXAFS spectra of the copolymer films revealed that after irradiation the Ar-S+-(CH3)2 sulfonium group bonded to the phenyl ring resisted the EUV excitation. Those results confirmed the polarity switching mechanism from hydrophilic sulfonium triflates to hydrophobic aromatic sulfides obtained in previous results. The inorganic component SbF6 - included in the resist formulations as an EUV absorption enhancer was particularly illustrative of the photofragmentation process. F 1s and O 1s HR-XPS spectra showed that fluorine remains linked to the antimony, even after 15 min of irradiation. A change of the antimony oxidation state was also observed with an increase in irradiation time. The presence of the heavy metal may control the high energy deposited on the resist which finally led to very well resolved 20 nm isolated line patterns by EUVL. The 10 times improved sensitivity compared with previous poly-MAPDST resists studied in the past showed the potential of this class of hybrid resists for next generation semiconductor industry applications.

4.
Int J Mol Sci ; 18(7)2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28718785

RESUMEN

Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU) are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae, when the films were pre-treated with Ultraviolet (UV) irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), scanning electron microscopy (SEM), and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management.


Asunto(s)
Biopelículas/efectos de los fármacos , Biopelículas/efectos de la radiación , Éteres/farmacología , Hongos/crecimiento & desarrollo , Hongos/efectos de la radiación , Poliuretanos/farmacología , Rayos Ultravioleta , Biopelículas/crecimiento & desarrollo , Hongos/efectos de los fármacos , Hongos/ultraestructura , Procesamiento de Imagen Asistido por Computador , Peso Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
5.
ACS Appl Mater Interfaces ; 7(30): 16348-56, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26158557

RESUMEN

Two key concepts in extreme ultraviolet lithography (EUVL) are important for it to be a candidate for the mass production of future integrated circuits: the polymer formulation and the photofragmentation process. In this work, both concepts were carefully studied. The design and synthesis of radiation-sensitive organic polymeric materials based on the inclusion of a radiation-sensitive tetrahydrothiophenium functional group are outlined. A 1-(4-methacryloyoxy)naphthalene-1-yl)tetrahydro-1H-thiophenium trifluoromethanesulfonate (MANTMS) monomer containing the tetrahydrothiophenium group undergoes homo- and copolymerizations using free-radical polymerization with a 2,2'-azobis(isobutyronitrile) initiator. The surface photodegradation and oxidation of these novel polymeric materials were investigated using highly monochromatized soft X-rays from synchrotron radiation at the carbon K-edge excitation region. An efficient functionalization was observed when the excitation energy was tuned to C 1s → π*C═C. A high rate of defluorination and a loss of sulfonated groups as a result of an increase in the irradiation time for the MANTMS homopolymer thin films were mainly observed under the π*C═C excitation of the naphthyl functional groups. On the contrary, excitation similar to C 1s → π*C═O or C 1s → σ*C-F did not produce important degradation, showing a highly selective process of bond breaking. Additionally, the presence of methyl methacrylate copolymer in the original MANTMS yielded a much higher degree of stability against inner-shell radiation damage. Our results highlight the importance of choosing the right polymer formulation and excitation energy to produce a sensitive material for EUVL without using the concept of chemical amplification.

6.
J Photochem Photobiol B ; 130: 57-67, 2014 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-24300992

RESUMEN

Ultraviolet (UV)-assisted surface modification in the presence of oxygen was used as initial step to achieve controlled degradation of poly(3-hydroxy-butyrate), PHB, films by entomopathogenic fungi. Treated surfaces were investigated by surface analysis techniques (water contact angle, Fourier Transformed Infrared Spectroscopy in Attenuated Total Reflectance mode, X-ray Photoelectron Spectroscopy, Near-edge X-ray Absorption Fine Structure, Gel Permeation Chromatography, Optical Microscopy, Scanning Electron Microscopy, and weight loss). After the UV-assisted treatments, new carbonyl groups in new chemical environments were detected by XPS and NEXAFS spectroscopy. The oxidizing atmosphere did not allow the formation of CC bonds, indicating that Norrish Type II mechanism is suppressed during or by the treatments. The higher hydrophilicity and concentration of oxygenated functional groups at the surface of the treated films possibly improved the biodegradation of the films. It was observed a clear increase in the growth of this fungus when oxygenated groups were grafted on the polymers surfaces. This simple methodology can be used to improve and control the degradation rate of PHB films in applications that require a controllable degradation rate.


Asunto(s)
Hidroxibutiratos/metabolismo , Hidroxibutiratos/efectos de la radiación , Hypocreales/metabolismo , Poliésteres/metabolismo , Poliésteres/efectos de la radiación , Rayos Ultravioleta , Hidroxibutiratos/química , Oxígeno/química , Poliésteres/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA