Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 19(38): 7349-7357, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37740382

RESUMEN

The twisting and writhing of a cell body and associated mechanical stresses is an underappreciated constraint on microbial self-propulsion. Multi-flagellated bacteria can even buckle and writhe under their own activity as they swim through a viscous fluid. New equilibrium configurations and steady-state dynamics then emerge which depend on the organism's mechanical properties and on the oriented distribution of flagella along its surface. Modeling the cell body as a semi-flexible Kirchhoff rod and coupling the mechanics to a flagellar orientation field, we derive the Euler-Poincaré equations governing the dynamics of the system, and rationalize experimental observations of buckling and writhing of elongated swarmer cells of the bacterium Proteus mirabilis. A sequence of bifurcations is identified as the body is made more compliant, due to both buckling and torsional instabilities. These studies highlight a practical requirement for the stiffness of bacteria below which self-buckling occurs and cell motility becomes ineffective.


Asunto(s)
Bacterias , Flagelos , Viscosidad , Natación
2.
Chem Mater ; 33(13): 5401-5412, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35341019

RESUMEN

We report the design and characterization of Fe-containing soft materials that respond to, interface with, and/or sequester Fe-chelating 'siderophores' that bacteria use to scavenge for iron and regulate iron homeostasis. We demonstrate that metal-organic network coatings fabricated by crosslinking tannic acid with iron(III) are stable in bacterial growth media, but erode upon exposure to biologically relevant concentrations of enterobactin and deferoxamine B, two siderophores produced by Gram-negative and Gram-positive bacteria, respectively. Our results are consistent with changes in network stability triggered by the extraction of iron(III) and reveal rates of siderophore-induced disassembly to depend upon both siderophore concentration and affinity for iron(III). These coatings also disassemble when incubated in the presence of cultures of wild-type Escherichia coli. Assays using genetically modified strains of E. coli reveal the erosion of these materials by live cultures to be promoted by secretion of enterobactin and not from other factors resulting from bacterial growth and metabolism. This stimuli-responsive behavior can also be exploited to design coatings that release the Fe-chelating antibiotic ciprofloxacin into bacterial cultures. Finally, we report the discovery of Fe-containing polymer hydrogels that avidly sequester and scavenge enterobactin from surrounding media. The materials reported here are (i) capable of interfacing or interfering with mechanisms that bacteria use to maintain iron homeostasis, either by yielding iron to or by sequestering iron-scavenging agents from bacteria, and can (ii) respond dynamically to or report on the presence of populations of iron-scavenging bacteria. Our results thus provide new tools that could prove useful for microbiological research and enable new stimuli-responsive strategies for interfacing with or controlling the behaviors of communities of iron-scavenging bacteria.

3.
mBio ; 10(5)2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31594808

RESUMEN

Swarmer cells of the Gram-negative uropathogenic bacteria Proteus mirabilis and Vibrio parahaemolyticus become long (>10 to 100 µm) and multinucleate during their growth and motility on polymer surfaces. We demonstrated that the increasing cell length is accompanied by a large increase in flexibility. Using a microfluidic assay to measure single-cell mechanics, we identified large differences in the swarmer cell stiffness (bending rigidity) of P. mirabilis (5.5 × 10-22 N m2) and V. parahaemolyticus (1.0 × 10-22 N m2) compared to vegetative cells (1.4 × 10-20 N m2 and 2.2 × 10-22 N m2, respectively). The reduction in bending rigidity (∼2-fold to ∼26-fold) was accompanied by a decrease in the average polysaccharide strand length of the peptidoglycan layer of the cell wall from 28 to 30 disaccharides to 19 to 22 disaccharides. Atomic force microscopy revealed a reduction in P. mirabilis peptidoglycan thickness from 1.5 nm (vegetative cells) to 1.0 nm (swarmer cells), and electron cryotomography indicated changes in swarmer cell wall morphology. P. mirabilis and V. parahaemolyticus swarmer cells became increasingly sensitive to osmotic pressure and susceptible to cell wall-modifying antibiotics (compared to vegetative cells)-they were ∼30% more likely to die after 3 h of treatment with MICs of the ß-lactams cephalexin and penicillin G. The adaptive cost of "swarming" was offset by the increase in cell susceptibility to physical and chemical changes in their environment, thereby suggesting the development of new chemotherapies for bacteria that leverage swarming for the colonization of hosts and for survival.IMPORTANCEProteus mirabilis and Vibrio parahaemolyticus are bacteria that infect humans. To adapt to environmental changes, these bacteria alter their cell morphology and move collectively to access new sources of nutrients in a process referred to as "swarming." We found that changes in the composition and thickness of the peptidoglycan layer of the cell wall make swarmer cells of P. mirabilis and V. parahaemolyticus more flexible (i.e., reduce cell stiffness) and that they become more sensitive to osmotic pressure and cell wall-targeting antibiotics (e.g., ß-lactams). These results highlight the importance of assessing the extracellular environment in determining antibiotic doses and the use of ß-lactam antibiotics for treating infections caused by swarmer cells of P. mirabilis and V. parahaemolyticus.


Asunto(s)
Antibacterianos/farmacología , Locomoción , Fenómenos Mecánicos , Proteus mirabilis/efectos de los fármacos , Vibrio parahaemolyticus/efectos de los fármacos , beta-Lactamas/farmacología , Fenómenos Químicos , Viabilidad Microbiana , Microfluídica/métodos , Presión Osmótica , Peptidoglicano/química , Polisacáridos Bacterianos/análisis , Proteus mirabilis/química , Proteus mirabilis/fisiología , Análisis de la Célula Individual , Vibrio parahaemolyticus/química , Vibrio parahaemolyticus/fisiología
4.
FASEB J ; 33(5): 6354-6364, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30786218

RESUMEN

A central question in cell biology is how cells respond to stress signals and biochemically regulate apoptosis. One critical pathway involves the change of mitochondrial function and release of cytochrome c to initiate apoptosis. In response to apoptotic stimuli, we found that maspin-a noninhibitory member of the serine protease inhibitor superfamily-translocates from the cytosol to mitochondria and binds to cardiolipin in the inner mitochondrial membrane. Biolayer interferometry assay revealed that recombinant maspin binds cardiolipin with an apparent Kd,of ∼15.8 µM and competes with cytochrome c (apparent Kd of ∼1.31 µM) for binding to cardiolipin-enriched membranes. A hydrophobic, lysine-rich domain in maspin consists of 27 aa, is located at position 268-294, and is responsible for the interaction of this protein with cardiolipin. Depletion of cardiolipin in cells significantly prevents maspin binding to the inner mitochondrial membrane and decreases cytochrome c release and apoptosis. Alteration to maspin's cardiolipin binding domain changes its ability to bind cardiolipin, and tumor cells expressing this mutant have a low frequency of apoptosis. We propose a model of apoptosis in which maspin binds to cardiolipin, displaces cytochrome c from the membrane, and facilitates its release to the cytoplasm.-Mahajan, N., Hoover, B., Rajendram, M., Shi, H. Y., Kawasaki, K., Weibel, D. B., Zhang, M. Maspin binds to cardiolipin in mitochondria and triggers apoptosis.


Asunto(s)
Apoptosis , Cardiolipinas/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Serpinas/metabolismo , Animales , Células CHO , Cardiolipinas/genética , Cricetulus , Citocromos c/genética , Citocromos c/metabolismo , Ratones , Mitocondrias/genética , Unión Proteica , Serpinas/genética
5.
J Bacteriol ; 201(9)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30782633

RESUMEN

Biofilm formation is a complex process that requires a number of transcriptional, proteomic, and physiological changes to enable bacterial survival. The lipid membrane presents a barrier to communication between the machinery within bacteria and the physical and chemical features of their extracellular environment, and yet little is known about how the membrane influences biofilm development. We found that depleting the anionic phospholipid cardiolipin reduces biofilm formation in Escherichia coli cells by as much as 50%. The absence of cardiolipin activates the regulation of colanic acid synthesis (Rcs) envelope stress response, which represses the production of flagella, disrupts initial biofilm attachment, and reduces biofilm growth. We demonstrate that a reduction in the concentration of cardiolipin impairs translocation of proteins across the inner membrane, which we hypothesize activates the Rcs pathway through the outer membrane lipoprotein RcsF. Our study demonstrates a molecular connection between the composition of membrane phospholipids and biofilm formation in E. coli and suggests that altering lipid biosynthesis may be a viable approach for altering biofilm formation and possibly other multicellular phenotypes related to bacterial adaptation and survival.IMPORTANCE There is a growing interest in the role of lipid membrane composition in the physiology and adaptation of bacteria. We demonstrate that a reduction in the anionic phospholipid cardiolipin impairs biofilm formation in Escherichia coli cells. Depleting cardiolipin reduced protein translocation across the inner membrane and activated the Rcs envelope stress response. Consequently, cardiolipin depletion produced cells lacking assembled flagella, which impacted their ability to attach to surfaces and seed the earliest stage in biofilm formation. This study provides empirical evidence for the role of anionic phospholipid homeostasis in protein translocation and its effect on biofilm development and highlights modulation of the membrane composition as a potential method of altering bacterial phenotypes related to adaptation and survival.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Cardiolipinas/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Transducción de Señal , Ácidos Cólicos/metabolismo , Transporte de Proteínas , Estrés Fisiológico
6.
mBio ; 10(1)2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30782656

RESUMEN

Cardiolipin (CL) is an anionic phospholipid that plays an important role in regulating protein biochemistry in bacteria and mitochondria. Deleting the CL synthase gene (Δcls) in Rhodobacter sphaeroides depletes CL and decreases cell length by 20%. Using a chemical biology approach, we found that a CL deficiency does not impair the function of the cell wall elongasome in R. sphaeroides; instead, biosynthesis of the peptidoglycan (PG) precursor lipid II is decreased. Treating R. sphaeroides cells with fosfomycin and d-cycloserine inhibits lipid II biosynthesis and creates phenotypes in cell shape, PG composition, and spatial PG assembly that are strikingly similar to those seen with R. sphaeroides Δcls cells, suggesting that CL deficiency alters the elongation of R. sphaeroides cells by reducing lipid II biosynthesis. We found that MurG-a glycosyltransferase that performs the last step of lipid II biosynthesis-interacts with anionic phospholipids in native (i.e., R. sphaeroides) and artificial membranes. Lipid II production decreases 25% in R. sphaeroides Δcls cells compared to wild-type cells, and overexpression of MurG in R. sphaeroides Δcls cells restores their rod shape, indicating that CL deficiency decreases MurG activity and alters cell shape. The R. sphaeroides Δcls mutant is more sensitive than the wild-type strain to antibiotics targeting PG synthesis, including fosfomycin, d-cycloserine, S-(3,4-dichlorobenzyl)isothiourea (A22), mecillinam, and ampicillin, suggesting that CL biosynthesis may be a potential target for combination chemotherapies that block the bacterial cell wall.IMPORTANCE The phospholipid composition of the cell membrane influences the spatial and temporal biochemistry of cells. We studied molecular mechanisms connecting membrane composition to cell morphology in the model bacterium Rhodobacter sphaeroides The peptidoglycan (PG) layer of the cell wall is a dominant component of cell mechanical properties; consequently, it has been an important antibiotic target. We found that the anionic phospholipid cardiolipin (CL) plays a role in determination of the shape of R. sphaeroides cells by affecting PG precursor biosynthesis. Removing CL in R. sphaeroides alters cell morphology and increases its sensitivity to antibiotics targeting proteins synthesizing PG. These studies provide a connection to spatial biochemical control in mitochondria, which contain an inner membrane with topological features in common with R. sphaeroides.


Asunto(s)
Cardiolipinas/metabolismo , Pared Celular/metabolismo , Rhodobacter sphaeroides/citología , Rhodobacter sphaeroides/metabolismo , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Proteínas de la Membrana Bacteriana Externa/metabolismo , Vías Biosintéticas , Eliminación de Gen , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Uridina Difosfato Ácido N-Acetilmurámico/biosíntesis
7.
Microb Ecol ; 78(2): 336-347, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30474730

RESUMEN

Staphylococcus aureus, an opportunistic pathogen member of the nasal and skin microbiota, can also be found in human oral samples and has been linked to infectious diseases of the oral cavity. As the nasal and oral cavities are anatomically connected, it is currently unclear whether S. aureus can colonize the oral cavity and become part of the oral microbiota, or if its presence in the oral cavity is simply transient. To start addressing this question, we assessed S. aureus ability to directly bind selected members of the oral microbiota as well as its ability to integrate into a human-derived complex oral microbial community in vitro. Our data show that S. aureus forms aggregates with Fusobacterium nucleatum and Porphyromonas gingivalis and that it can incorporate into the human-derived in vitro oral community. Further analysis of the F. nucleatum-S. aureus interaction revealed that the outer-membrane adhesin RadD is partially involved in aggregate formation and that the RadD-mediated interaction leads to an increase in expression of the staphylococcal global regulator gene sarA. Our findings lend support to the notion that S. aureus can become part of the complex microbiota of the human mouth, which could serve as a reservoir for S. aureus. Furthermore, direct interaction with key members of the oral microbiota could affect S. aureus pathogenicity contributing to the development of several S. aureus associated oral infections.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fusobacterium nucleatum/metabolismo , Microbiota , Boca/microbiología , Staphylococcus aureus/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Biopelículas , Fusobacterium nucleatum/genética , Humanos , Unión Proteica , Staphylococcus aureus/genética
8.
mBio ; 9(5)2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30206169

RESUMEN

The stiffness of bacteria prevents cells from bursting due to the large osmotic pressure across the cell wall. Many successful antibiotic chemotherapies target elements that alter mechanical properties of bacteria, and yet a global view of the biochemistry underlying the regulation of bacterial cell stiffness is still emerging. This connection is particularly interesting in opportunistic human pathogens such as Pseudomonas aeruginosa that have a large (80%) proportion of genes of unknown function and low susceptibility to different families of antibiotics, including beta-lactams, aminoglycosides, and quinolones. We used a high-throughput technique to study a library of 5,790 loss-of-function mutants covering ~80% of the nonessential genes and correlated P. aeruginosa individual genes with cell stiffness. We identified 42 genes coding for proteins with diverse functions that, when deleted individually, decreased cell stiffness by >20%. This approach enabled us to construct a "mechanical genome" for P. aeruginosa d-Alanine dehydrogenase (DadA) is an enzyme that converts d-Ala to pyruvate that was included among the hits; when DadA was deleted, cell stiffness decreased by 18% (using multiple assays to measure mechanics). An increase in the concentration of d-Ala in cells downregulated the expression of genes in peptidoglycan (PG) biosynthesis, including the peptidoglycan-cross-linking transpeptidase genes ponA and dacC Consistent with this observation, ultraperformance liquid chromatography-mass spectrometry analysis of murein from P. aeruginosa cells revealed that dadA deletion mutants contained PG with reduced cross-linking and altered composition compared to wild-type cells.IMPORTANCE The mechanical properties of bacteria are important for protecting cells against physical stress. The cell wall is the best-characterized cellular element contributing to bacterial cell mechanics; however, the biochemistry underlying its regulation and assembly is still not completely understood. Using a unique high-throughput biophysical assay, we identified genes coding proteins that modulate cell stiffness in the opportunistic human pathogen Pseudomonas aeruginosa This approach enabled us to discover proteins with roles in a diverse range of biochemical pathways that influence the stiffness of P. aeruginosa cells. We demonstrate that d-Ala-a component of the peptidoglycan-is tightly regulated in cells and that its accumulation reduces expression of machinery that cross-links this material and decreases cell stiffness. This research demonstrates that there is much to learn about mechanical regulation in bacteria, and these studies revealed new nonessential P. aeruginosa targets that may enhance antibacterial chemotherapies or lead to new approaches.


Asunto(s)
Alanina/metabolismo , Elasticidad , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/fisiología , Alanina-Deshidrogenasa/genética , Pared Celular/química , Eliminación de Gen , Genes Bacterianos , Redes y Vías Metabólicas/genética , Peptidoglicano/metabolismo , Pseudomonas aeruginosa/genética
9.
Nature ; 559(7715): 617-621, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30022160

RESUMEN

Gram-negative bacteria possess a complex cell envelope that consists of a plasma membrane, a peptidoglycan cell wall and an outer membrane. The envelope is a selective chemical barrier1 that defines cell shape2 and allows the cell to sustain large mechanical loads such as turgor pressure3. It is widely believed that the covalently cross-linked cell wall underpins the mechanical properties of the envelope4,5. Here we show that the stiffness and strength of Escherichia coli cells are largely due to the outer membrane. Compromising the outer membrane, either chemically or genetically, greatly increased deformation of the cell envelope in response to stretching, bending and indentation forces, and induced increased levels of cell lysis upon mechanical perturbation and during L-form proliferation. Both lipopolysaccharides and proteins contributed to the stiffness of the outer membrane. These findings overturn the prevailing dogma that the cell wall is the dominant mechanical element within Gram-negative bacteria, instead demonstrating that the outer membrane can be stiffer than the cell wall, and that mechanical loads are often balanced between these structures.


Asunto(s)
Membrana Celular/metabolismo , Pared Celular/metabolismo , Bacterias Gramnegativas/citología , Bacterias Gramnegativas/metabolismo , Membrana Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos , Detergentes/farmacología , Escherichia coli/citología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Bacterias Gramnegativas/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Soporte de Peso
11.
Proc Natl Acad Sci U S A ; 115(20): 5271-5276, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29703753

RESUMEN

Control and manipulation of bacterial populations requires an understanding of the factors that govern growth, division, and antibiotic action. Fluorescent and chemically reactive small molecule probes of cell envelope components can visualize these processes and advance our knowledge of cell envelope biosynthesis (e.g., peptidoglycan production). Still, fundamental gaps remain in our understanding of the spatial and temporal dynamics of cell envelope assembly. Previously described reporters require steps that limit their use to static imaging. Probes that can be used for real-time imaging would advance our understanding of cell envelope construction. To this end, we synthesized a fluorogenic probe that enables continuous live cell imaging in mycobacteria and related genera. This probe reports on the mycolyltransferases that assemble the mycolic acid membrane. This peptidoglycan-anchored bilayer-like assembly functions to protect these cells from antibiotics and host defenses. Our probe, quencher-trehalose-fluorophore (QTF), is an analog of the natural mycolyltransferase substrate. Mycolyltransferases process QTF by diverting their normal transesterification activity to hydrolysis, a process that unleashes fluorescence. QTF enables high contrast continuous imaging and the visualization of mycolyltransferase activity in cells. QTF revealed that mycolyltransferase activity is augmented before cell division and localized to the septa and cell poles, especially at the old pole. This observed localization suggests that mycolyltransferases are components of extracellular cell envelope assemblies, in analogy to the intracellular divisomes and polar elongation complexes. We anticipate QTF can be exploited to detect and monitor mycobacteria in physiologically relevant environments.


Asunto(s)
Pared Celular/metabolismo , Factores Cordón/metabolismo , Corynebacterium glutamicum/crecimiento & desarrollo , Colorantes Fluorescentes/química , Procesamiento de Imagen Asistido por Computador/métodos , Mycobacterium tuberculosis/crecimiento & desarrollo , Tuberculosis/diagnóstico , Proteínas Bacterianas/metabolismo , División Celular , Fluorescencia , Humanos , Peptidoglicano/metabolismo , Tuberculosis/metabolismo , Tuberculosis/microbiología
12.
mSphere ; 3(1)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29299529

RESUMEN

Animal-microbe symbioses are ubiquitous in nature and scientifically important in diverse areas, including ecology, medicine, and agriculture. Steinernema nematodes and Xenorhabdus bacteria compose an established, successful model system for investigating microbial pathogenesis and mutualism. The bacterium Xenorhabdus nematophila is a species-specific mutualist of insect-infecting Steinernema carpocapsae nematodes. The bacterium colonizes a specialized intestinal pocket within the infective stage of the nematode, which transports the bacteria between insects that are killed and consumed by the pair for reproduction. Current understanding of the interaction between the infective-stage nematode and its bacterial colonizers is based largely on population-level, snapshot time point studies on these organisms. This limitation arises because investigating temporal dynamics of the bacterium within the nematode is impeded by the difficulty of isolating and maintaining individual living nematodes and tracking colonizing bacterial cells over time. To overcome this challenge, we developed a microfluidic system that enables us to spatially isolate and microscopically observe individual, living Steinernema nematodes and monitor the growth and development of the associated X. nematophila bacterial communities-starting from a single cell or a few cells-over weeks. Our data demonstrate, to our knowledge, the first direct, temporal, in vivo visual analysis of a symbiosis system and the application of this system to reveal continuous dynamics of the symbiont population in the living host animal. IMPORTANCE This paper describes an experimental system for directly investigating population dynamics of a symbiotic bacterium, Xenorhabdus nematophila, in its host-the infective stage of the entomopathogenic nematode Steinernema carpocapsae. Tracking individual and groups of bacteria in individual host nematodes over days and weeks yielded insight into dynamic growth and topology changes of symbiotic bacterial populations within infective juvenile nematodes. Our approach for studying symbioses between bacteria and nematodes provides a system to investigate long-term host-microbe interactions in individual nematodes and extrapolate the lessons learned to other bacterium-animal interactions.

13.
ACS Chem Biol ; 13(1): 235-246, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29227619

RESUMEN

Bacterial cell division requires identification of the division site, assembly of the division machinery, and constriction of the cell envelope. These processes are regulated in response to several cellular and environmental signals. Here, we use small molecule iron chelators to characterize the surprising connections between bacterial iron homeostasis and cell division. We demonstrate that iron starvation downregulates the transcription of genes encoding proteins involved in cell division, reduces protein biosynthesis, and prevents correct positioning of the division machinery at the division site. These combined events arrest the constriction of the cell during late stages of cytokinesis in a manner distinct from known mechanisms of inhibiting cell division. Overexpression of genes encoding cell division proteins or iron transporters partially suppresses the biological activity of iron chelators and restores growth and division. We propose a model demonstrating the effect of iron availability on the regulatory mechanisms coordinating division in response to the nutritional state of the cell.


Asunto(s)
Bacterias/citología , Bencimidazoles/farmacología , Hidrazinas/farmacología , Quelantes del Hierro/farmacología , Hierro/metabolismo , Naftalenos/farmacología , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bencimidazoles/metabolismo , Caulobacter crescentus/citología , Caulobacter crescentus/efectos de los fármacos , Caulobacter crescentus/metabolismo , Cobalto/farmacología , Cobre/farmacología , Citocinesis/efectos de los fármacos , Escherichia coli/citología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Hidrazinas/metabolismo , Hierro/farmacología , Quelantes del Hierro/metabolismo , Naftalenos/metabolismo , Peptidoglicano/metabolismo
14.
J Biol Chem ; 293(5): 1623-1641, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29233891

RESUMEN

In Escherichia coli, FtsLB plays a central role in the initiation of cell division, possibly transducing a signal that will eventually lead to the activation of peptidoglycan remodeling at the forming septum. The molecular mechanisms by which FtsLB operates in the divisome, however, are not understood. Here, we present a structural analysis of the FtsLB complex, performed with biophysical, computational, and in vivo methods, that establishes the organization of the transmembrane region and proximal coiled coil of the complex. FRET analysis in vitro is consistent with formation of a tetramer composed of two FtsL and two FtsB subunits. We predicted subunit contacts through co-evolutionary analysis and used them to compute a structural model of the complex. The transmembrane region of FtsLB is stabilized by hydrophobic packing and by a complex network of hydrogen bonds. The coiled coil domain probably terminates near the critical constriction control domain, which might correspond to a structural transition. The presence of strongly polar amino acids within the core of the tetrameric coiled coil suggests that the coil may split into two independent FtsQ-binding domains. The helix of FtsB is interrupted between the transmembrane and coiled coil regions by a flexible Gly-rich linker. Conversely, the data suggest that FtsL forms an uninterrupted helix across the two regions and that the integrity of this helix is indispensable for the function of the complex. The FtsL helix is thus a candidate for acting as a potential mechanical connection to communicate conformational changes between periplasmic, membrane, and cytoplasmic regions.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas de la Membrana/química , Modelos Moleculares , Complejos Multiproteicos/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Periplasma/química , Periplasma/genética , Periplasma/metabolismo , Estructura Secundaria de Proteína
15.
Nat Microbiol ; 2: 17115, 2017 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-28737752

RESUMEN

The shapes of most bacteria are imparted by the structures of their peptidoglycan cell walls, which are determined by many dynamic processes that can be described on various length scales ranging from short-range glycan insertions to cellular-scale elasticity1-11. Understanding the mechanisms that maintain stable, rod-like morphologies in certain bacteria has proved to be challenging due to an incomplete understanding of the feedback between growth and the elastic and geometric properties of the cell wall3,4,12-14. Here, we probe the effects of mechanical strain on cell shape by modelling the mechanical strains caused by bending and differential growth of the cell wall. We show that the spatial coupling of growth to regions of high mechanical strain can explain the plastic response of cells to bending4 and quantitatively predict the rate at which bent cells straighten. By growing filamentous Escherichia coli cells in doughnut-shaped microchambers, we find that the cells recovered their straight, native rod-shaped morphologies when released from captivity at a rate consistent with the theoretical prediction. We then measure the localization of MreB, an actin homologue crucial to cell wall synthesis, inside confinement and during the straightening process, and find that it cannot explain the plastic response to bending or the observed straightening rate. Our results implicate mechanical strain sensing, implemented by components of the elongasome yet to be fully characterized, as an important component of robust shape regulation in E. coli.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/citología , Escherichia coli/fisiología , Pared Celular/química , Pared Celular/genética , Pared Celular/fisiología , Escherichia coli/química , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Microscopía , Microscopía Fluorescente , Modelos Biológicos , Peptidoglicano/química , Peptidoglicano/metabolismo , Estrés Fisiológico
16.
Biochemistry ; 56(29): 3710-3724, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28666084

RESUMEN

Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the ß-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.


Asunto(s)
Membrana Celular , Pared Celular , Bacterias Gramnegativas , Bacterias Grampositivas , Adaptación Fisiológica/fisiología , Membrana Celular/química , Membrana Celular/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Bacterias Gramnegativas/química , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/química , Bacterias Grampositivas/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Viabilidad Microbiana , Peptidoglicano/química , Peptidoglicano/metabolismo , Ácidos Teicoicos/química , Ácidos Teicoicos/metabolismo
17.
Medchemcomm ; 8(5): 942-951, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30034678

RESUMEN

Bacterial DNA gyrase is an essential type II topoisomerase that enables cells to overcome topological barriers encountered during replication, transcription, recombination, and repair. This enzyme is ubiquitous in bacteria and represents an important clinical target for antibacterial therapy. In this paper we report the characterization of three exciting new gyramide analogs-from a library of 183 derivatives-that are potent inhibitors of DNA gyrase and are active against clinical strains of gram-negative bacteria (Escherichia coli, Shigella flexneri, and Salmonella enterica; 3 of 10 wild-type strains tested) and gram-positive bacteria (Bacillus spp., Enterococcus spp., Staphylococcus spp., and Streptococcus spp.; all 9 of the wild-type strains tested). E. coli strains resistant to the DNA gyrase inhibitors ciprofloxacin and novobiocin display very little cross-resistance to these new gyramides. In vitro studies demonstrate that the new analogs are potent inhibitors of the DNA supercoiling activity of DNA gyrase (IC50s of 47-170 nM) but do not alter the enzyme's ATPase activity. Although mutations that confer bacterial cells resistant to these new gyramides map to the genes encoding the subunits of the DNA gyrase (gyrA and gyrB genes), overexpression of GyrA, GyrB, or GyrA and GyrB together does not suppress the inhibitory effect of the gyramides. These observations support the hypothesis that the gyramides inhibit DNA gyrase using a mechanism that is unique from other known inhibitors.

18.
Appl Environ Microbiol ; 83(4)2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27986722

RESUMEN

An estimated 1.5 billion microbial infections occur globally each year and result in ∼4.6 million deaths. A technology gap associated with commercially available diagnostic tests in remote and underdeveloped regions prevents timely pathogen identification for effective antibiotic chemotherapies for infected patients. The result is a trial-and-error approach that is limited in effectiveness, increases risk for patients while contributing to antimicrobial drug resistance, and reduces the lifetime of antibiotics. This paper addresses this important diagnostic technology gap by describing a low-cost, portable, rapid, and easy-to-use microfluidic cartridge-based system for detecting the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) bacterial pathogens that are most commonly associated with antibiotic resistance. The point-of-care molecular diagnostic system consists of a vacuum-degassed microfluidic cartridge preloaded with lyophilized recombinase polymerase amplification (RPA) assays and a small portable battery-powered electronic incubator/reader. The isothermal RPA assays detect the targeted ESKAPE pathogens with high sensitivity (e.g., a limit of detection of ∼10 nucleic acid molecules) that is comparable to that of current PCR-based assays, and they offer advantages in power consumption, engineering, and robustness, which are three critical elements required for the point-of-care setting. IMPORTANCE: This paper describes a portable system for rapidly identifying bacteria in resource-limited environments; we highlight the capabilities of the technology by detecting different pathogens within the ESKAPE collection, which cause nosocomial infections. The system is designed around isothermal DNA-based assays housed within an autonomous plastic cartridge that are designed with the end user in mind, who may have limited technological training. Displaying excellent sensitivity and specificity, the assay systems that we demonstrate may enable future diagnoses of bacterial infection to guide the development of effective chemotherapies and may have a role in areas beyond health where rapid detection is valuable, including in industrial processing and manufacturing, food security, agriculture, and water quality testing.


Asunto(s)
Infecciones Bacterianas/diagnóstico , Infección Hospitalaria/diagnóstico , ADN Bacteriano/análisis , Dispositivos Laboratorio en un Chip , Microfluídica/métodos , Sistemas de Atención de Punto , Acinetobacter baumannii/clasificación , Acinetobacter baumannii/genética , Infecciones Bacterianas/microbiología , Infección Hospitalaria/microbiología , Cartilla de ADN/genética , ADN Bacteriano/genética , Farmacorresistencia Bacteriana Múltiple , Enterobacter/clasificación , Enterobacter/genética , Enterococcus faecium/clasificación , Enterococcus faecium/genética , Humanos , Klebsiella pneumoniae/clasificación , Klebsiella pneumoniae/genética , Microfluídica/instrumentación , Pseudomonas aeruginosa/clasificación , Pseudomonas aeruginosa/genética , Staphylococcus aureus/clasificación , Staphylococcus aureus/genética
19.
Bioorg Med Chem Lett ; 26(22): 5539-5544, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27765507

RESUMEN

Antibiotic adjuvant therapy represents an exciting opportunity to enhance the activity of clinical antibiotics by co-dosing with a secondary small molecule. Successful adjuvants decrease the concentration of antibiotics used to defeat bacteria, increase activity (in some cases introducing activity against organisms that are drug resistant), and reduce the frequency at which drug-resistant bacteria emerge. We report that 5-alkyloxytryptamines are a new class of broad-spectrum antibacterial agents with exciting activity as antibiotic adjuvants. We synthesized 5-alkyloxytryptamine analogs and found that an alkyl chain length of 6-12 carbons and a primary ammonium group are necessary for the antibacterial activity of the compounds, and an alkyl chain length of 6-10 carbons increased the membrane permeability of Gram-positive and Gram-negative bacteria. Although several of the most potent analogs also have activity against the membranes of human embryonic kidney cells, we demonstrate that below the minimum inhibitory concentration (MIC)-where mammalian cell toxicity is low-these compounds may be successfully used as adjuvants for chloramphenicol, tetracycline, ciprofloxacin, and rifampicin against clinical strains of Salmonella typhimurium, Acinetobacter baumannii and Staphylococcus aureus, reducing MIC values by as much as several logs.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Triptaminas/química , Triptaminas/farmacología , Acinetobacter baumannii/efectos de los fármacos , Alquilación , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Células HEK293 , Humanos , Salmonella typhimurium/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
20.
PLoS Comput Biol ; 12(9): e1005041, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27599206

RESUMEN

Understanding how stochastic molecular fluctuations affect cell behavior requires the quantification of both behavior and protein numbers in the same cells. Here, we combine automated microscopy with in situ hydrogel polymerization to measure single-cell protein expression after tracking swimming behavior. We characterized the distribution of non-genetic phenotypic diversity in Escherichia coli motility, which affects single-cell exploration. By expressing fluorescently tagged chemotaxis proteins (CheR and CheB) at different levels, we quantitatively mapped motile phenotype (tumble bias) to protein numbers using thousands of single-cell measurements. Our results disagreed with established models until we incorporated the role of CheB in receptor deamidation and the slow fluctuations in receptor methylation. Beyond refining models, our central finding is that changes in numbers of CheR and CheB affect the population mean tumble bias and its variance independently. Therefore, it is possible to adjust the degree of phenotypic diversity of a population by adjusting the global level of expression of CheR and CheB while keeping their ratio constant, which, as shown in previous studies, confers functional robustness to the system. Since genetic control of protein expression is heritable, our results suggest that non-genetic diversity in motile behavior is selectable, supporting earlier hypotheses that such diversity confers a selective advantage.


Asunto(s)
Quimiotaxis/fisiología , Proteínas de Escherichia coli/análisis , Escherichia coli/metabolismo , Escherichia coli/fisiología , Biología Computacional , Proteínas de Escherichia coli/metabolismo , Metiltransferasas/análisis , Metiltransferasas/metabolismo , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...