Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucl Instrum Methods Phys Res B ; 541: 114-116, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37265512

RESUMEN

The FRagment Separator FRS at GSI is a versatile spectrometer and separator for experiments with relativistic in-flight separated short-lived exotic beams. One branch of the FRS is connected to the target hall where the bio-medical cave (Cave M) is located. Recently a joint activity between the experimental groups of the FRS and the biophysics at the GSI and Department of physics at LMU was started to perform biomedical experiments relevant for hadron therapy with positron emitting carbon and oxygen beams. This paper presents the new ion-optical mode and commissioning results of the FRS-Cave M branch where positron emitting 15O-ions were provided to the medical cave for the first time. An overall conversion efficiency of 2.9±0.2×10-4 15O fragments per primary 16O ion accelerated in the synchrotron SIS18 was reached.

2.
Phys Med Biol ; 68(1)2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36533621

RESUMEN

Objective. Beams of stable ions have been a well-established tool for radiotherapy for many decades. In the case of ion beam therapy with stable12C ions, the positron emitters10,11C are produced via projectile and target fragmentation, and their decays enable visualization of the beam via positron emission tomography (PET). However, the PET activity peak matches the Bragg peak only roughly and PET counting statistics is low. These issues can be mitigated by using a short-lived positron emitter as a therapeutic beam.Approach.An experiment studying the precision of the measurement of ranges of positron-emitting carbon isotopes by means of PET has been performed at the FRS fragment-separator facility of GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany. The PET scanner used in the experiment is a dual-panel version of a Siemens Biograph mCT PET scanner.Main results.High-quality in-beam PET images and activity distributions have been measured from the in-flight produced positron emitting isotopes11C and10C implanted into homogeneous PMMA phantoms. Taking advantage of the high statistics obtained in this experiment, we investigated the time evolution of the uncertainty of the range determined by means of PET during the course of irradiation, and show that the uncertainty improves with the inverse square root of the number of PET counts. The uncertainty is thus fully determined by the PET counting statistics. During the delivery of 1.6 × 107ions in 4 spills for a total duration of 19.2 s, the PET activity range uncertainty for10C,11C and12C is 0.04 mm, 0.7 mm and 1.3 mm, respectively. The gain in precision related to the PET counting statistics is thus much larger when going from11C to10C than when going from12C to11C. The much better precision for10C is due to its much shorter half-life, which, contrary to the case of11C, also enables to include the in-spill data in the image formation.Significance. Our results can be used to estimate the contribution from PET counting statistics to the precision of range determination in a particular carbon therapy situation, taking into account the irradiation scenario, the required dose and the PET scanner characteristics.


Asunto(s)
Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Fantasmas de Imagen , Semivida , Alemania
3.
Phys Rev Lett ; 129(14): 142502, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36240396

RESUMEN

The root mean square radii of the proton density distribution in ^{16-24}O derived from measurements of charge changing cross sections with a carbon target at ∼900A MeV together with the matter radii portray thick neutron skin for ^{22-24}O despite ^{22,24}O being doubly magic. Imprints of the shell closures at N=14 and 16 are reflected in local minima of their proton radii that provide evidence for the tensor interaction causing them. The radii agree with ab initio calculations employing the chiral NNLO_{sat} interaction, though skin thickness predictions are challenged. Shell model predictions agree well with the data.


Asunto(s)
Neutrones , Protones , Carbono
4.
Phys Rev Lett ; 124(20): 202502, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32501052

RESUMEN

Taking benefit of the R3B/SOFIA setup to measure the mass and the nuclear charge of both fission fragments in coincidence with the total prompt-neutron multiplicity, the scission configurations are inferred along the thorium chain, from the asymmetric fission in the heavier isotopes to the symmetric fission in the neutron-deficient thorium. Against all expectations, the symmetric scission in the light thorium isotopes shows a compact configuration, which is in total contrast to what is known in the fission of the heavier thorium isotopes and heavier actinides. This new main symmetric scission mode is characterized by a significant drop in deformation energy of the fission fragments of about 19 MeV, compared to the well-known symmetric scission in the uranium-plutonium region.

5.
Phys Rev Lett ; 123(9): 092502, 2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31524489

RESUMEN

The most remote isotope from the proton dripline (by 4 atomic mass units) has been observed: ^{31}K. It is unbound with respect to three-proton (3p) emission, and its decays have been detected in flight by measuring the trajectories of all decay products using microstrip detectors. The 3p emission processes have been studied by the means of angular correlations of ^{28}S+3p and the respective decay vertices. The energies of the previously unknown ground and excited states of ^{31}K have been determined. This provides its 3p separation energy value S_{3p} of -4.6(2) MeV. Upper half-life limits of 10 ps of the observed ^{31}K states have been derived from distributions of the measured decay vertices.

6.
Phys Rev Lett ; 120(15): 152505, 2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29756883

RESUMEN

We observed the atomic 1s and 2p states of π^{-} bound to ^{121}Sn nuclei as distinct peak structures in the missing mass spectra of the ^{122}Sn(d,^{3}He) nuclear reaction. A very intense deuteron beam and a spectrometer with a large angular acceptance let us achieve a potential of discovery, which includes the capability of determining the angle-dependent cross sections with high statistics. The 2p state in a Sn nucleus was observed for the first time. The binding energies and widths of the pionic states are determined and found to be consistent with previous experimental results of other Sn isotopes. The spectrum is measured at finite reaction angles for the first time. The formation cross sections at the reaction angles between 0° and 2° are determined. The observed reaction-angle dependence of each state is reproduced by theoretical calculations. However, the quantitative comparison with our high-precision data reveals a significant discrepancy between the measured and calculated formation cross sections of the pionic 1s state.

7.
Phys Rev Lett ; 121(24): 242501, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30608744

RESUMEN

The isospin character of p-n pairs at large relative momentum has been observed for the first time in the ^{16}O ground state. A strong population of the J,T=1,0 state and a very weak population of the J,T=0,1 state were observed in the neutron pickup domain of ^{16}O(p,pd) at 392 MeV. This strong isospin dependence at large momentum transfer is not reproduced by the distorted-wave impulse approximation calculations with known spectroscopic amplitudes. The results indicate the presence of high-momentum protons and neutrons induced by the tensor interactions in the ground state of ^{16}O.

8.
Phys Rev Lett ; 117(22): 222302, 2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27925748

RESUMEN

The ^{54}Fe nucleus was populated from a ^{56}Fe beam impinging on a Be target with an energy of E/A=500 MeV. The internal decay via γ-ray emission of the 10^{+} metastable state was observed. As the structure of this isomeric state has to involve at least four unpaired nucleons, it cannot be populated in a simple two-neutron removal reaction from the ^{56}Fe ground state. The isomeric state was produced in the low-momentum (-energy) tail of the parallel momentum (energy) distribution of ^{54}Fe, suggesting that it was populated via the decay of the Δ^{0} resonance into a proton. This process allows the population of four-nucleon states, such as the observed isomer. Therefore, it is concluded that the observation of this 10^{+} metastable state in ^{54}Fe is a consequence of the quark structure of the nucleons.

9.
Phys Rev Lett ; 117(20): 202501, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27886506

RESUMEN

Excitation spectra of ^{11}C are measured in the ^{12}C(p,d) reaction near the η^{'} emission threshold. A proton beam extracted from the synchrotron SIS-18 at GSI with an incident energy of 2.5 GeV impinges on a carbon target. The momenta of deuterons emitted at 0° are precisely measured with the fragment separator (FRS) operated as a spectrometer. In contrast to theoretical predictions on the possible existence of deeply bound η^{'}-mesic states in carbon nuclei, no distinct structures are observed associated with the formation of bound states. The spectra are analyzed to set stringent constraints on the formation cross section and on the hitherto barely known η^{'}-nucleus interaction.

10.
Phys Rev Lett ; 117(10): 102501, 2016 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-27636470

RESUMEN

Proton radii of ^{12-19}C densities derived from first accurate charge changing cross section measurements at 900A MeV with a carbon target are reported. A thick neutron surface evolves from ∼0.5 fm in ^{15}C to ∼1 fm in ^{19}C. The halo radius in ^{19}C is found to be 6.4±0.7 fm as large as ^{11}Li. Ab initio calculations based on chiral nucleon-nucleon and three-nucleon forces reproduce the radii well.

11.
Phys Rev Lett ; 115(20): 202501, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26613434

RESUMEN

Previously unknown isotopes (30)Ar and (29)Cl have been identified by measurement of the trajectories of their in-flight decay products (28)S+p+p and (28)S+p, respectively. The analysis of angular correlations of the fragments provided information on decay energies and the structure of the parent states. The ground states of (30)Ar and (29)Cl were found at 2.25(-0.10)(+0.15) and 1.8±0.1 MeV above the two- and one-proton thresholds, respectively. The lowest states in (30)Ar and (29)Cl point to a violation of isobaric symmetry in the structure of these unbound nuclei. The two-proton decay has been identified in a transition region between simultaneous two-proton and sequential proton emissions from the (30)Ar ground state, which is characterized by an interplay of three-body and two-body decay mechanisms. The first hint of a fine structure of the two-proton decay of (30)Ar*(2(+)) has been obtained by detecting two decay branches into the ground and first-excited states of the (28)S fragment.

12.
Phys Rev Lett ; 113(13): 132501, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25302882

RESUMEN

The first determination of radii of point proton distribution (proton radii) of (12-17)B from charge-changing cross sections (σ(CC)) measurements at the FRS, GSI, Darmstadt is reported. The proton radii are deduced from a finite-range Glauber model analysis of the σ(CC). The radii show an increase from ¹³B to ¹7B and are consistent with predictions from the antisymmetrized molecular dynamics model for the neutron-rich nuclei. The measurements show the existence of a thick neutron surface with neutron-proton radius difference of 0.51(0.11) fm in ¹7B.

13.
Phys Rev Lett ; 110(12): 122502, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-25166798

RESUMEN

Long-lived isomers in (212)Bi have been studied following (238)U projectile fragmentation at 670 MeV per nucleon. The fragmentation products were injected as highly charged ions into a storage ring, giving access to masses and half-lives. While the excitation energy of the first isomer of (212)Bi was confirmed, the second isomer was observed at 1478(30) keV, in contrast to the previously accepted value of >1910 keV. It was also found to have an extended Lorentz-corrected in-ring half-life >30 min, compared to 7.0(3) min for the neutral atom. Both the energy and half-life differences can be understood as being due a substantial, though previously unrecognized, internal decay branch for neutral atoms. Earlier shell-model calculations are now found to give good agreement with the isomer excitation energy. Furthermore, these and new calculations predict the existence of states at slightly higher energy that could facilitate isomer deexcitation studies.

14.
Phys Rev Lett ; 111(24): 242501, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24483646

RESUMEN

The coupling between bound quantum states and those in the continuum is of high theoretical interest. Experimental studies of bound drip-line nuclei provide ideal testing grounds for such investigations since they, due to the feeble binding energy of their valence particles, are easy to excite into the continuum. In this Letter, continuum states in the heaviest particle-stable Be isotope, 14Be, are studied by employing the method of inelastic proton scattering in inverse kinematics. New continuum states are found at excitation energies E*=3.54(16) MeV and E*=5.25(19) MeV. The structure of the earlier known 2(1)+ state at 1.54(13) MeV was confirmed with a predominantly (0d5/2)2 configuration while there is very clear evidence that the 2(2)+ state has a predominant (1s1/2, 0d5/2) structure with a preferential three-body decay mechanism. The region at about 7 MeV excitation shows distinct features of sequential neutron decay via intermediate states in 13Be. This demonstrates that the increasing availability of energetic beams of exotic nuclei opens up new vistas for experiments leading towards a new understanding of the interplay between bound and continuum states.

15.
Phys Rev Lett ; 111(24): 242503, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24483648

RESUMEN

The E1 strength distribution in 68Ni has been investigated using Coulomb excitation in inverse kinematics at the R3B-LAND setup and by measuring the invariant mass in the one- and two-neutron decay channels. The giant dipole resonance and a low-lying peak (pygmy dipole resonance) have been observed at 17.1(2) and 9.55(17) MeV, respectively. The measured dipole polarizability is compared to relativistic random phase approximation calculations yielding a neutron-skin thickness of 0.17(2) fm. A method and analysis applicable to neutron-rich nuclei has been developed, allowing for a precise determination of neutron skins in nuclei as a function of neutron excess.

16.
Phys Rev Lett ; 109(16): 162502, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-23215071

RESUMEN

The neutron-rich lead isotopes, up to (216)Pb, have been studied for the first time, exploiting the fragmentation of a primary uranium beam at the FRS-RISING setup at GSI. The observed isomeric states exhibit electromagnetic transition strengths which deviate from state-of-the-art shell-model calculations. It is shown that their complete description demands the introduction of effective three-body interactions and two-body transition operators in the conventional neutron valence space beyond (208)Pb.

17.
Nature ; 486(7403): 341-5, 2012 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22722192

RESUMEN

The shell structure of atomic nuclei is associated with 'magic numbers' and originates in the nearly independent motion of neutrons and protons in a mean potential generated by all nucleons. During ß(+)-decay, a proton transforms into a neutron in a previously not fully occupied orbital, emitting a positron-neutrino pair with either parallel or antiparallel spins, in a Gamow-Teller or Fermi transition, respectively. The transition probability, or strength, of a Gamow-Teller transition depends sensitively on the underlying shell structure and is usually distributed among many states in the neighbouring nucleus. Here we report measurements of the half-life and decay energy for the decay of (100)Sn, the heaviest doubly magic nucleus with equal numbers of protons and neutrons. In the ß-decay of (100)Sn, a large fraction of the strength is observable because of the large decay energy. We determine the largest Gamow-Teller strength so far measured in allowed nuclear ß-decay, establishing the 'superallowed' nature of this Gamow-Teller transition. The large strength and the low-energy states in the daughter nucleus, (100)In, are well reproduced by modern, large-scale shell model calculations.

18.
Phys Rev Lett ; 107(17): 172502, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-22107511

RESUMEN

A ß-decaying high-spin isomer in (96)Cd, with a half-life T(1/2)=0.29(-0.10)(+0.11) s, has been established in a stopped beam rare isotope spectroscopic investigations at GSI (RISING) experiment. The nuclei were produced using the fragmentation of a primary beam of (124)Xe on a (9)Be target. From the half-life and the observed γ decays in the daughter nucleus, (96)Ag, we conclude that the ß-decaying state is the long predicted 16(+) "spin-gap" isomer. Shell-model calculations, using the Gross-Frenkel interaction and the πν(p(1/2),g(9/2)) model space, show that the isoscalar component of the neutron-proton interaction is essential to explain the origin of the isomer. Core excitations across the N=Z=50 gaps and the Gamow-Teller strength, B(GT) distributions have been studied via large-scale shell-model calculations using the πν(g,d,s) model space to compare with the experimental B(GT) value obtained from the half-life of the isomer.

19.
Phys Rev Lett ; 105(17): 172501, 2010 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-21231037

RESUMEN

A study of cooled ¹97Au projectile-fragmentation products has been performed with a storage ring. This has enabled metastable nuclear excitations with energies up to 3 MeV, and half-lives extending to minutes or longer, to be identified in the neutron-rich nuclides ¹8³(,)¹84(,)¹86Hf and ¹86(,)¹87Ta. The results support the prediction of a strongly favored isomer region near neutron number 116.

20.
Phys Rev Lett ; 102(15): 152501, 2009 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-19518623

RESUMEN

The first measurement of the momentum distribution for one-neutron removal from (24)O at 920A MeV performed at GSI, Darmstadt is reported. The observed distribution has a width (FWHM) of 99 +/- 4 MeV/c in the projectile rest frame and a one-neutron removal cross section of 63 +/- 7 mb. The results are well explained with a nearly pure 2s_{1/2} neutron spectroscopic factor of 1.74 +/- 0.19 within the eikonal model. This large s-wave probability shows a spherical shell closure thereby confirming earlier suggestions that (24)O is a new doubly magic nucleus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...