Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Evol Appl ; 13(10): 2630-2645, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33294013

RESUMEN

Species introductions provide opportunities to quantify rates and patterns of evolutionary change in response to novel environments. Alewives (Alosa pseudoharengus) are native to the East Coast of North America where they ascend coastal rivers to spawn in lakes and then return to the ocean. Some populations have become landlocked within the last 350 years and diverged phenotypically from their ancestral marine population. More recently, alewives were introduced to the Laurentian Great Lakes (~150 years ago), but these populations have not been compared to East Coast anadromous and landlocked populations. We quantified 95 years of evolution in foraging traits and overall body shape of Great Lakes alewives and compared patterns of phenotypic evolution of Great Lakes alewives to East Coast anadromous and landlocked populations. Our results suggest that gill raker spacing in Great Lakes alewives has evolved in a dynamic pattern that is consistent with responses to strong but intermittent eco-evolutionary feedbacks with zooplankton size. Following their initial colonization of Lakes Ontario and Michigan, dense alewife populations likely depleted large-bodied zooplankton, which drove a decrease in alewife gill raker spacing. However, the introduction of large, non-native zooplankton to the Great Lakes in later decades resulted in an increase in gill raker spacing, and present-day Great Lakes alewives have gill raker spacing patterns that are similar to the ancestral East Coast anadromous population. Conversely, contemporary Great Lakes alewife populations possess a gape width consistent with East Coast landlocked populations. Body shape showed remarkable parallel evolution with East Coast landlocked populations, likely due to a shared response to the loss of long-distance movement or migrations. Our results suggest the colonization of a new environment and cessation of migration can result in rapid parallel evolution in some traits, but contingency also plays a role, and a dynamic ecosystem can also yield novel trait combinations.

2.
Freshw Biol ; 65(11): 1997-2009, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33288969

RESUMEN

Diel vertical migration (DVM) is common in aquatic organisms. The trade-off between reduced predation risk in deeper, darker waters during the day and increased foraging opportunities closer to the surface at night is a leading hypothesis for DVM behaviour.Diel vertical migration behaviour has dominated research and assessment frameworks for Mysis, an omnivorous mid-trophic level macroinvertebrate that exhibits strong DVM between benthic and pelagic habitats and plays key roles in many deep lake ecosystems. However, some historical literature and more recent evidence indicate that mysids also remain on the bottom at night, counter to expectations of DVM.We surveyed the freshwater Mysis literature using Web of Science (WoS; 1945-2019) to quantify the frequency of studies on demographics, diets, and feeding experiments that considered, assessed, or included Mysis that did not migrate vertically but remained in benthic habitats. We supplemented our WoS survey with literature searches for relevant papers published prior to 1945, journal articles and theses not listed in WoS, and additional references known to the authors but missing from WoS (e.g. only 47% of the papers used to evaluate in situ diets were identified by WoS).Results from the survey suggest that relatively little attention has been paid to the benthic components of Mysis ecology. Moreover, the literature suggests that reliance on Mysis sampling protocols using pelagic gear at night provides an incomplete picture of Mysis populations and their role in ecosystem structure and function.We summarise current knowledge of Mysis DVM and provide an expanded framework that more fully considers the role of benthic habitat. Acknowledging benthic habitat as an integral part of Mysis ecology will enable research to better understand the role of Mysis in food web processes.

3.
Ecol Evol ; 7(16): 6201-6209, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28861225

RESUMEN

Resource availability constrains the life history strategies available to organisms and may thereby limit population growth rates and productivity. We used this conceptual framework to explore the mechanisms driving recently reported negative relationships between fish productivity and dissolved organic carbon (DOC) concentrations in lakes. We studied populations of bluegill (Lepomis macrochirus) in a set of lakes with DOC concentrations ranging from 3 to 24 mg/L; previous work has demonstrated that primary and secondary productivity of food webs is negatively related to DOC concentration across this gradient. For each population, we quantified individual growth rate, age at maturity, age-specific fecundity, maximum age, length-weight and length-egg size relationships, and other life history characteristics. We observed a strong negative relationship between maximum size and DOC concentration; for instance, fish reached masses of 150 to 260 g in low-DOC lakes but <120 g in high-DOC lakes. Relationships between fecundity and length, and between egg size and length, were constant across the DOC gradient. Because fish in high-DOC lakes reached smaller sizes but had similar fecundity and egg size at a given size, their total lifetime fecundity was as much as two orders of magnitude lower than fish in low-DOC lakes. High DOC concentrations appeared to constrain the range of bluegill life history strategies available; populations in high-DOC lakes always had low initial growth rates and high ages at maturity, whereas populations in low-DOC showed higher variability in these traits. This was also the case for the intrinsic rates of natural increase of these populations, which were always low at the high end of the DOC gradient. The potentially lower capacity for fish populations in high-DOC lakes to recover from exploitation has clear implications for the sustainable management of recreational fisheries in the face of considerable spatial heterogeneity and ongoing temporal change in lake DOC concentrations.

4.
Ecol Appl ; 27(1): 56-65, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28052508

RESUMEN

Many ecosystems continue to experience rapid transformations due to processes like land use change and resource extraction. A systems approach to maintaining natural resources focuses on how interactions and feedbacks among components of complex social-ecological systems generate social and ecological outcomes. In recreational fisheries, residential shoreline development and fish stocking are two widespread human behaviors that influence fisheries, yet emergent social-ecological outcomes from these potentially interacting behaviors remain under explored. We applied a social-ecological systems framework using a simulation model and empirical data to determine whether lakeshore development is likely to promote stocking through its adverse effects on coarse woody habitat and thereby also on survival of juvenile and adult fish. We demonstrate that high lakeshore development is likely to generate dependency of the ecosystem on the social system, in the form of stocking. Further, lakeshore development can interact with social-ecological processes to create deficits for state-level governments, which threatens the ability to fund further ecosystem subsidies. Our results highlight the value of a social-ecological framework for maintaining ecosystem services like recreational fisheries.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Lagos , Recreación , Medio Social , Wisconsin
5.
Glob Chang Biol ; 22(8): 2766-75, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26919470

RESUMEN

The observed pattern of lake browning, or increased terrestrial dissolved organic carbon (DOC) concentration, across the northern hemisphere has amplified the importance of understanding how consumer productivity varies with DOC concentration. Results from comparative studies suggest these increased DOC concentrations may reduce crustacean zooplankton productivity due to reductions in resource quality and volume of suitable habitat. Although these spatial comparisons provide an expectation for the response of zooplankton productivity as DOC concentration increases, we still have an incomplete understanding of how zooplankton respond to temporal increases in DOC concentration within a single system. As such, we used a whole-lake manipulation, in which DOC concentration was increased from 8 to 11 mg L(-1) in one basin of a manipulated lake, to test the hypothesis that crustacean zooplankton production should subsequently decrease. In contrast to the spatially derived expectation of sharp DOC-mediated decline, we observed a small increase in zooplankton densities in response to our experimental increase in DOC concentration of the treatment basin. This was due to significant increases in gross primary production and resource quality (lower seston carbon-to-phosphorus ratio; C:P). These results demonstrate that temporal changes in lake characteristics due to increased DOC may impact zooplankton in ways that differ from those observed in spatial surveys. We also identified significant interannual variability across our study region, which highlights potential difficulty in detecting temporal responses of organism abundances to gradual environmental change (e.g., browning).


Asunto(s)
Carbono/análisis , Lagos , Zooplancton/crecimiento & desarrollo , Animales , Carbono/metabolismo , Crustáceos , Ecosistema
6.
PLoS One ; 10(1): e0116182, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25635686

RESUMEN

Stable isotopes of carbon, nitrogen, and sulfur are used as ecological tracers for a variety of applications, such as studies of animal migrations, energy sources, and food web pathways. Yet uncertainty relating to the time period integrated by isotopic measurement of animal tissues can confound the interpretation of isotopic data. There have been a large number of experimental isotopic diet shift studies aimed at quantifying animal tissue isotopic turnover rate λ (%·day(-1), often expressed as isotopic half-life, ln(2)/λ, days). Yet no studies have evaluated or summarized the many individual half-life estimates in an effort to both seek broad-scale patterns and characterize the degree of variability. Here, we collect previously published half-life estimates, examine how half-life is related to body size, and test for tissue- and taxa-varying allometric relationships. Half-life generally increases with animal body mass, and is longer in muscle and blood compared to plasma and internal organs. Half-life was longest in ecotherms, followed by mammals, and finally birds. For ectotherms, different taxa-tissue combinations had similar allometric slopes that generally matched predictions of metabolic theory. Half-life for ectotherms can be approximated as: ln (half-life) = 0.22*ln (body mass) + group-specific intercept; n = 261, p<0.0001, r2 = 0.63. For endothermic groups, relationships with body mass were weak and model slopes and intercepts were heterogeneous. While isotopic half-life can be approximated using simple allometric relationships for some taxa and tissue types, there is also a high degree of unexplained variation in our models. Our study highlights several strong and general patterns, though accurate prediction of isotopic half-life from readily available variables such as animal body mass remains elusive.


Asunto(s)
Dieta , Animales , Isótopos de Carbono/metabolismo , Isótopos de Carbono/farmacocinética , Semivida , Isótopos de Nitrógeno/metabolismo , Isótopos de Nitrógeno/farmacocinética , Especificidad de la Especie , Isótopos de Azufre/metabolismo , Isótopos de Azufre/farmacocinética , Distribución Tisular
7.
Ecology ; 95(5): 1236-42, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-25000755

RESUMEN

Inputs of terrestrial organic carbon (t-OC) into lakes are often considered a resource subsidy for aquatic consumer production. Although there is evidence that terrestrial carbon can be incorporated into the tissues of aquatic consumers, its ability to enhance consumer production has been debated. Our research aims to evaluate the net effect of t-OC input on zooplankton. We used a survey of zooplankton production and resource use in ten lakes along a naturally occurring gradient of t-OC concentration to address these questions. Total and group-specific zooplankton production was negatively related to t-OC. Residual variation in zooplankton production that was not explained by t-OC was negatively related to terrestrial resource use (allochthony) by zooplankton. These results challenge the designation of terrestrial carbon as a resource subsidy; rather, the negative effect of reduced light penetration on the amount of suitable habitat and the low resource quality of t-OC appear to diminish zooplankton production. Our findings suggest that ongoing continental-scale increases in t-OC concentrations of lakes will likely have negative impacts on the productivity of aquatic food webs.


Asunto(s)
Carbono/química , Carbono/metabolismo , Lagos/química , Zooplancton/fisiología , Animales , Ecosistema
8.
Ecology ; 92(5): 1115-25, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21661572

RESUMEN

Fluxes of organic matter across habitat boundaries are common in food webs. These fluxes may strongly influence community dynamics, depending on the extent to which they are used by consumers. Yet understanding of basal resource use by consumers is limited, because describing trophic pathways in complex food webs is difficult. We quantified resource use for zooplankton, zoobenthos, and fishes in four low-productivity lakes, using a Bayesian mixing model and measurements of hydrogen, carbon, and nitrogen stable isotope ratios. Multiple sources of uncertainty were explicitly incorporated into the model. As a result, posterior estimates of resource use were often broad distributions; nevertheless, clear patterns were evident. Zooplankton relied on terrestrial and pelagic primary production, while zoobenthos and fishes relied on terrestrial and benthic primary production. Across all consumer groups terrestrial reliance tended to be higher, and benthic reliance lower, in lakes where light penetration was low due to inputs of terrestrial dissolved organic carbon. These results support and refine an emerging consensus that terrestrial and benthic support of lake food webs can be substantial, and they imply that changes in the relative availability of basal resources drive the strength of cross-habitat trophic connections.


Asunto(s)
Carbono/metabolismo , Ecosistema , Monitoreo del Ambiente , Agua Dulce/química , Modelos Biológicos , Animales , Teorema de Bayes , Carbono/química , Isótopos de Carbono , Simulación por Computador , Crustáceos , Peces , Insectos , Zooplancton
9.
Oecologia ; 161(2): 313-24, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19471971

RESUMEN

Aquatic food webs are subsidized by allochthonous resources but the utilization of these resources by consumers can be difficult to quantify. Stable isotope ratios of hydrogen (deuterium:hydrogen; deltaD) potentially distinguish allochthonous inputs because deltaD differs between terrestrial and aquatic primary producers. However, application of this tracer is limited by uncertainties regarding the trophic fractionation of deltaD and the contributions of H from environmental water (often called "dietary water") to consumer tissue H. We addressed these uncertainties using laboratory experiments, field observations, modeling, and a literature synthesis. Laboratory experiments that manipulated the deltaD of water and food for insects, cladoceran zooplankton, and fishes provided strong evidence that trophic fractionation of deltaD was negligible. The proportion of tissue H derived from environmental water was substantial yet variable among studies; estimates of this proportion, inclusive of lab, field, and literature data, ranged from 0 to 0.39 (mean 0.17 +/- 0.12 SD). There is a clear need for additional studies of environmental water. Accounting for environmental water in mixing models changes estimates of resource use, although simulations suggest that uncertainty about the environmental water contribution does not substantially increase the uncertainty in estimates of resource use. As long as this uncertainty is accounted for, deltaD may be a powerful tool for estimating resource use in food webs.


Asunto(s)
Aedes/química , Daphnia/química , Deuterio/análisis , Cadena Alimentaria , Agua Dulce/química , Trucha/metabolismo , Animales , Cromatografía de Gases , Simulación por Computador , Larva/química , Modelos Biológicos , Músculo Esquelético/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...