Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 12: 678976, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367203

RESUMEN

Sinorhizobium meliloti contains the negatively charged phosphatidylglycerol and cardiolipin as well as the zwitterionic phosphatidylethanolamine (PE) and phosphatidylcholine (PC) as major membrane phospholipids. In previous studies we had isolated S. meliloti mutants that lack PE or PC. Although mutants deficient in PE are able to form nitrogen-fixing nodules on alfalfa host plants, mutants lacking PC cannot sustain development of any nodules on host roots. Transcript profiles of mutants unable to form PE or PC are distinct; they differ from each other and they are different from the wild type profile. For example, a PC-deficient mutant of S. meliloti shows an increase of transcripts that encode enzymes required for succinoglycan biosynthesis and a decrease of transcripts required for flagellum formation. Indeed, a PC-deficient mutant is unable to swim and overproduces succinoglycan. Some suppressor mutants, that regain swimming and form normal levels of succinoglycan, are altered in the ExoS sensor. Our findings suggest that the lack of PC in the sinorhizobial membrane activates the ExoS/ChvI two-component regulatory system. ExoS/ChvI constitute a molecular switch in S. meliloti for changing from a free-living to a symbiotic life style. The periplasmic repressor protein ExoR controls ExoS/ChvI function and it is thought that proteolytic ExoR degradation would relieve repression of ExoS/ChvI thereby switching on this system. However, as ExoR levels are similar in wild type, PC-deficient mutant and suppressor mutants, we propose that lack of PC in the bacterial membrane provokes directly a conformational change of the ExoS sensor and thereby activation of the ExoS/ChvI two-component system.

2.
Mol Plant Microbe Interact ; 28(7): 811-24, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25675256

RESUMEN

Sinorhizobium fredii HH103 is a fast-growing rhizobial strain infecting a broad range of legumes including both American and Asiatic soybeans. In this work, we present the sequencing and annotation of the HH103 genome (7.25 Mb), consisting of one chromosome and six plasmids and representing the structurally most complex sinorhizobial genome sequenced so far. Comparative genomic analyses of S. fredii HH103 with strains USDA257 and NGR234 showed that the core genome of these three strains contains 4,212 genes (61.7% of the HH103 genes). Synteny plot analysis revealed that the much larger chromosome of USDA257 (6.48 Mb) is colinear to the HH103 (4.3 Mb) and NGR324 chromosomes (3.9 Mb). An additional region of the USDA257 chromosome of about 2 Mb displays similarity to plasmid pSfHH103e. Remarkable differences exist between HH103 and NGR234 concerning nod genes, flavonoid effect on surface polysaccharide production, and quorum-sensing systems. Furthermore a number of protein secretion systems have been found. Two genes coding for putative type III-secreted effectors not previously described in S. fredii, nopI and gunA, have been located on the HH103 genome. These differences could be important to understand the different symbiotic behavior of S. fredii strains HH103, USDA257, and NGR234 with soybean.


Asunto(s)
Genoma Bacteriano , Glycine max/microbiología , Sinorhizobium fredii/genética , Genes Bacterianos , Datos de Secuencia Molecular , Fijación del Nitrógeno/genética , Raíces de Plantas/microbiología , Polisacáridos Bacterianos/genética , Percepción de Quorum , Sinorhizobium fredii/fisiología , Simbiosis/genética
3.
Genome Announc ; 1(1)2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23405285

RESUMEN

Sinorhizobium meliloti Rm41 nodulates alfalfa plants, forming indeterminate type nodules. It is characterized by a strain-specific K-antigen able to replace exopolysaccharides in promotion of nodule invasion. We present the Rm41 genome, composed of one chromosome, the chromid pSymB, the megaplasmid pSymA, and the nonsymbiotic plasmid pRme41a.

4.
J Bacteriol ; 194(6): 1617-8, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22374952

RESUMEN

Sinorhizobium fredii HH103 is a fast-growing rhizobial strain that is able to nodulate legumes that develop determinate nodules, e.g., soybean, and legumes that form nodules of the indeterminate type. Here we present the genome of HH103, which consists of one chromosome and five plasmids with a total size of 7.22 Mb.


Asunto(s)
ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Sinorhizobium fredii/genética , Cromosomas Bacterianos , Datos de Secuencia Molecular , Plásmidos , Análisis de Secuencia de ADN , Sinorhizobium fredii/aislamiento & purificación , Sinorhizobium fredii/fisiología , Glycine max/microbiología , Simbiosis
5.
J Biotechnol ; 155(1): 11-9, 2011 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-21458507

RESUMEN

Glycine max (soybean) plants can be nodulated by fast-growing rhizobial strains of the genus Sinorhizobium as well as by slow-growing strains clustered in the genus Bradyrhizobium. Fast-growing rhizobia strains with different soybean cultivar specificities have been isolated from Chinese soils and from other geographical regions. Most of these strains have been clustered into the species Sinorhizobium fredii. The S. fredii strain HH103 was isolated from soils of Hubei province, Central China and was first described in 1985. This strain is capable to nodulate American and Asiatic soybean cultivars and many other different legumes and is so far the best studied fast-growing soybean-nodulating strain. Additionally to the chromosome S. fredii HH103 carries five indigenous plasmids. The largest plasmid (pSfrHH103e) harbours genes for the production of diverse surface polysaccharides, such as exopolysaccharides (EPS), lipopolysaccharides (LPS), and capsular polysaccharides (KPS). The second largest plasmid (pSfrHH103d) is a typical symbiotic plasmid (pSym), carrying nodulation and nitrogen fixation genes. The present mini review focuses on symbiotic properties of S. fredii HH103, in particular on nodulation and surface polysaccharides aspects. The model strain S. fredii HH103 was chosen for genomic sequencing, which is currently in progress. First analyses of the draft genome sequence revealed an extensive synteny between the chromosomes of S. fredii HH103 and Rhizobium sp. NGR234.


Asunto(s)
Genoma Bacteriano , Sinorhizobium fredii/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Genómica/métodos , Sinorhizobium fredii/genética , Glycine max/microbiología , Simbiosis/genética , Simbiosis/fisiología
6.
J Biotechnol ; 155(1): 20-33, 2011 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-21396969

RESUMEN

Isolates of the symbiotic nitrogen-fixing species Sinorhizobium meliloti usually contain a chromosome and two large megaplasmids encoding functions that are absolutely required for the specific interaction of the microsymbiont with corresponding host plants leading to an effective symbiosis. The complete genome sequence, including the megaplasmids pSmeSM11c (related to pSymA) and pSmeSM11d (related to pSymB), was established for the dominant, indigenous S. meliloti strain SM11 that had been isolated during a long-term field release experiment with genetically modified S. meliloti strains. The chromosome, the largest replicon of S. meliloti SM11, is 3,908,022bp in size and codes for 3785 predicted protein coding sequences. The size of megaplasmid pSmeSM11c is 1,633,319bp and it contains 1760 predicted protein coding sequences whereas megaplasmid pSmeSM11d is 1,632,395bp in size and comprises 1548 predicted coding sequences. The gene content of the SM11 chromosome is quite similar to that of the reference strain S. meliloti Rm1021. Comparison of pSmeSM11c to pSymA of the reference strain revealed that many gene regions of these replicons are variable, supporting the assessment that pSymA is a major hot-spot for intra-specific differentiation. Plasmids pSymA and pSmeSM11c both encode unique genes. Large gene regions of pSmeSM11c are closely related to corresponding parts of Sinorhizobium medicae WSM419 plasmids. Moreover, pSmeSM11c encodes further novel gene regions, e.g. additional plasmid survival genes (partition, mobilisation and conjugative transfer genes), acdS encoding 1-aminocyclopropane-1-carboxylate deaminase involved in modulation of the phytohormone ethylene level and genes having predicted functions in degradative capabilities, stress response, amino acid metabolism and associated pathways. In contrast to Rm1021 pSymA and pSmeSM11c, megaplasmid pSymB of strain Rm1021 and pSmeSM11d are highly conserved showing extensive synteny with only few rearrangements. Most remarkably, pSmeSM11b contains a new gene cluster predicted to be involved in polysaccharide biosynthesis. Compilation of the S. meliloti SM11 genome sequence contributes to an extension of the S. meliloti pan-genome.


Asunto(s)
Cromosomas Bacterianos , Genoma Bacteriano , Plásmidos/genética , Sinorhizobium meliloti/genética , Bacteriófagos/genética , Etilenos/metabolismo , Evolución Molecular , Genómica , Medicago sativa/microbiología , Fijación del Nitrógeno , Óxido Nitroso/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Análisis de Secuencia de ADN , Sinorhizobium meliloti/aislamiento & purificación , Sinorhizobium meliloti/metabolismo , Simbiosis
7.
J Biotechnol ; 155(1): 3-10, 2011 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-21329739

RESUMEN

Alfalfa (Medicago sativa) is the most cultivated forage legume for cattle and animal feeding, occupying about 32 million hectares over the world. Management of the N2-fixing symbiosis of this plant to maximize crop production is therefore an important objective. A fundamental constraint to this aim emerges when a moderately low soil pH hampers the establishment of an effective symbiosis with indigenous and/or inoculated rhizobia. Besides the association of alfalfa with Ensifer (Sinorhizobium) meliloti, this legume is able to establish a symbiosis with Ensifer (Sinorhizobium) medicae and with less characterized types of rhizobia, such as the Oregon-like strains, Rhizobium sp. Or191 initially isolated in the USA, and the Rhizobium sp. LPU83 strain, from Argentina. These strains are acid-tolerant, highly competitive for acidic-soil-alfalfa nodulation, but inefficient for biological nitrogen fixation with alfalfa. These features position the Oregon-like rhizobia as strains of potential risk in agricultural soils compared with the efficient symbiont E. meliloti. Moreover, the collected genetic information has revealed that the genomic structure of these rhizobial isolates is complex in terms of sequence similarities shared with other rhizobia. Such a "patched" genetic composition has obviously imposed severe restrictions to the classical taxonomy of these rhizobia. In this work we summarize the accumulated knowledge about the Oregon-like rhizobia and present a phylogenetic analysis based on genome sequence data of Rhizobium sp. LPU83 obtained by a high-throughput sequencing on the Genome Sequencer FLX Titanium platform. The accessibility of the complete genomic sequence will release up more experimental possibilities since this information will then enable biochemical studies as well as proteomics and transcriptomics approaches.


Asunto(s)
Genoma Bacteriano , Genómica/métodos , Rhizobium/genética , Variación Genética , Medicago sativa/microbiología , Fijación del Nitrógeno/genética , Filogenia , Plásmidos/genética , Rhizobium/clasificación , Rhizobium/metabolismo , Sinorhizobium/genética , Simbiosis/genética
8.
BMC Microbiol ; 10: 265, 2010 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-20955556

RESUMEN

BACKGROUND: Environmental pH stress constitutes a limiting factor for S. meliloti survival and development. The response to acidic pH stress in S. meliloti is versatile and characterized by the differential expression of genes associated with various cellular functions. The purpose of this study was to gain detailed insight into the participation of sigma factors in the complex stress response system of S. meliloti 1021 using pH stress as an effector. RESULTS: In vitro assessment of S meliloti wild type and sigma factor mutants provided first evidence that the sigma factor RpoH1 plays a major role in the pH stress response. Differential expression of genes related to rhizobactin biosynthesis was observed in microarray analyses performed with the rpoH1 mutant at pH 7.0. The involvement of the sigma factor RpoH1 in the regulation of S. meliloti genes upon pH stress was analyzed by comparing time-course experiments of the wild type and the rpoH1 mutant. Three classes of S. meliloti genes could be identified, which were transcriptionally regulated in an RpoH1-independent, an RpoH1-dependent or in a complex manner. The first class of S. meliloti genes, regulated in an RpoH1-independent manner, comprises the group of the exopolysaccharide I biosynthesis genes and also the group of genes involved in motility and flagellar biosynthesis. The second class of S. meliloti genes, regulated in an RpoH1-dependent manner, is composed of genes known from heat shock studies, like ibpA, grpE and groEL5, as well as genes involved in translation like tufA and rplC. Finally, the third class of S. meliloti genes was regulated in a complex manner, which indicates that besides sigma factor RpoH1, further regulation takes place. This was found to be the case for the genes dctA, ndvA and smc01505. CONCLUSIONS: Clustering of time-course microarray data of S. meliloti wild type and sigma factor rpoH1 mutant allowed for the identification of gene clusters, each with a unique time-dependent expression pattern, as well as for the classification of genes according to their dependence on RpoH1 expression and regulation. This study provided clear evidence that the sigma factor RpoH1 plays a major role in pH stress response.


Asunto(s)
Proteínas Bacterianas/metabolismo , Factor sigma/metabolismo , Sinorhizobium meliloti/fisiología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Concentración de Iones de Hidrógeno , Mutación , Factor sigma/genética , Sinorhizobium meliloti/genética , Estrés Fisiológico
9.
BMC Microbiol ; 9: 37, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19216801

RESUMEN

BACKGROUND: The symbiotic soil bacterium Sinorhizobium meliloti often has to face low pH in its natural habitats. To identify genes responding to pH stress a global transcriptional analysis of S. meliloti strain 1021 following a pH shift from pH 7.0 to pH 5.75 was carried out. In detail, oligo-based whole genome microarrays were used in a time course experiment. The monitoring period covered a time span of about one hour after the pH shift. The obtained microarray data was filtered and grouped by K-means clustering in order to obtain groups of genes behaving similarly concerning their expression levels throughout the time course. RESULTS: The results display a versatile response of S. meliloti 1021 represented by distinct expression profiles of subsets of genes with functional relation. The eight generated clusters could be subdivided into a group of four clusters containing genes that were up-regulated and another group of four clusters containing genes that were down-regulated in response to the acidic pH shift. The respective mean expression progression of the four up-regulated clusters could be described as (i) permanently and strong, (ii) permanently and intermediate, (iii) permanently and progressive, and (iv) transiently up-regulated. The expression profile of the four down-regulated clusters could be characterized as (i) permanently, (ii) permanently and progressive, (iii) transiently, and (iv) ultra short down-regulated. Genes coding for proteins with functional relation were mostly cumulated in the same cluster, pointing to a characteristic expression profile for distinct cellular functions. Among the strongest up-regulated genes lpiA, degP1, cah, exoV and exoH were found. The most striking functional groups responding to the shift to acidic pH were genes of the exopolysaccharide I biosynthesis as well as flagellar and chemotaxis genes. While the genes of the exopolysaccharide I biosynthesis (exoY, exoQ, exoW, exoV, exoT, exoH, exoK exoL, exoO, exoN, exoP) were up-regulated, the expression level of the flagellar and chemotaxis genes (visR, motA, flgF, flgB, flgC, fliE, flgG, flgE, flgL, flbT, mcpU) simultaneously decreased in response to acidic pH. Other responding functional groups of genes mainly belonged to nitrogen uptake and metabolism (amtB, nrtB, nirB, nirD), methionine metabolism (metA, metF, metH, metK, bmt and ahcY) as well as ion transport systems (sitABCD, phoCD). It is noteworthy, that several genes coding for hypothetical proteins of unknown function could be identified as up-regulated in response to the pH shift. CONCLUSION: It was shown that the short term response to acidic pH stress does not result in a simple induction or repression of genes, but in a sequence of responses varying in their intensity over time. Obviously, the response to acidic pH is not based on a few specific genes, but involves whole sets of genes associated with various cellular functions.


Asunto(s)
Ácidos/farmacología , Antibacterianos/farmacología , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Sinorhizobium meliloti/fisiología , Concentración de Iones de Hidrógeno , Análisis de Secuencia por Matrices de Oligonucleótidos , Sinorhizobium meliloti/efectos de los fármacos , Factores de Tiempo
10.
J Biotechnol ; 140(1-2): 45-50, 2009 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-19103235

RESUMEN

Sinorhizobium meliloti is a symbiotic soil bacterium of the alphaproteobacterial subdivision. Like other rhizobia, S. meliloti induces nitrogen-fixing root nodules on leguminous plants. This is an ecologically and economically important interaction, because plants engaged in symbiosis with rhizobia can grow without exogenous nitrogen fertilizers. The S. meliloti-Medicago truncatula (barrel medic) association is an important symbiosis model. The S. meliloti genome was published in 2001, and the M. truncatula genome currently is being sequenced. Many new resources and data have been made available since the original S. meliloti genome annotation and an update was needed. In June 2008, we submitted our annotation update to the EMBL and NCBI databases. Here we describe this new annotation and a new web-based portal RhizoGATE. About 1000 annotation updates were made; these included assigning functions to 313 putative proteins, assigning EC numbers to 431 proteins, and identifying 86 new putative genes. RhizoGATE incorporates the new annotion with the S. meliloti GenDB project, a platform that allows annotation updates in real time. Locations of transposon insertions, plasmid integrations, and array probe sequences are available in the GenDB project. RhizoGATE employs the EMMA platform for management and analysis of transcriptome data and the IGetDB data warehouse to integrate a variety of heterogeneous external data sources.


Asunto(s)
Bases de Datos Genéticas , Genoma Bacteriano , Gestión de la Información , Sinorhizobium meliloti/genética , Proteínas Bacterianas/genética , Almacenamiento y Recuperación de la Información , Internet , Medicago truncatula , Análisis por Micromatrices , Interfaz Usuario-Computador
11.
J Biotechnol ; 136(1-2): 31-7, 2008 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-18562031

RESUMEN

Genomic variation between the Sinorhizobium meliloti model strain Rm1021 and the field isolate SM11 was assessed by using the genome-wide S. meliloti Rm1021 Sm6k-oligonucleotide microarray in a comparative genomic hybridisation experiment. Several gene clusters present in the Rm1021 genome are missing in the SM11 genome. In detail, three missing gene clusters were identified for the chromosome, five for megaplasmid pSymA and two for megaplasmid pSymB. To confirm these hybridisation results, the draft genome sequence of the S. meliloti field isolate SM11 was established by 454-pyrosequencing. Three sequencing runs on the ultrafast Genome Sequencer 20 System yielded 112.5 million bases. These could be assembled into 905 larger contigs resulting in a nearly 15-fold coverage of the 7.1Mb SM11 genome. The missing gene regions identified by comparative genomic hybridisation could be confirmed by the results of the 454-sequencing project. An in-depth analysis of these gene regions resulted in the following findings: (i) a complete type I restriction/modification system encoded by a composite transposon is absent in the chromosome of strain SM11. (ii) Most of the Rm1021 denitrification genes and the complete siderophore biosynthesis operon were found to be missing on SM11 megaplasmid pSymA. (iii) S. meliloti SM11 megaplasmid pSymB lacks a complete cell surface carbohydrate synthesis gene cluster. (iv) Several genes that are absent in the SM11 genome could be assigned to insertion sequences and transposons.


Asunto(s)
Mapeo Cromosómico/métodos , Genoma Bacteriano/genética , Familia de Multigenes/genética , Sistemas de Lectura Abierta/genética , Análisis de Secuencia de ADN/métodos , Sinorhizobium meliloti/clasificación , Sinorhizobium meliloti/genética , Secuencia de Bases , Secuencia Conservada/genética , Hibridación in Situ/métodos , Datos de Secuencia Molecular , Alineación de Secuencia/métodos , Especificidad de la Especie
12.
Syst Appl Microbiol ; 30(5): 390-400, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17291704

RESUMEN

To develop a reliable tool for the identification and classification of the different Ensifer species, without the need for sequencing, a prototype DNA microarray that targets the rpsA housekeeping gene was designed and tested. Internal segments of the rpsA gene from 34 reference strains, representing the different Ensifer species, were sequenced and the sequences were used to select 44 diagnostic oligonucleotides that served as probes for the identification microarray. Both, genomic DNA and specific rpsA PCR-products were tested as a target in hybridisation experiments. Experimental conditions were optimised and the diagnostic oligonucleotides were validated. Hybridisation results with the rpsA PCR-products showed reliable identification of the reference strains to species and genomovar level. Our data indicate that a microarray targeting housekeeping genes is a promising, accurate and relatively simple genotyping technique that would also be applicable for the identification and characterization of other bacterial groups of interest.


Asunto(s)
Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , ARN Ribosómico 16S/análisis , Rhizobiaceae/clasificación , Proteínas Ribosómicas/genética , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Rhizobiaceae/genética , Proteínas Ribosómicas/metabolismo
13.
Nat Biotechnol ; 24(11): 1385-91, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17057704

RESUMEN

Azoarcus sp. strain BH72, a mutualistic endophyte of rice and other grasses, is of agrobiotechnological interest because it supplies biologically fixed nitrogen to its host and colonizes plants in remarkably high numbers without eliciting disease symptoms. The complete genome sequence is 4,376,040-bp long and contains 3,992 predicted protein-coding sequences. Genome comparison with the Azoarcus-related soil bacterium strain EbN1 revealed a surprisingly low degree of synteny. Coding sequences involved in the synthesis of surface components potentially important for plant-microbe interactions were more closely related to those of plant-associated bacteria. Strain BH72 appears to be 'disarmed' compared to plant pathogens, having only a few enzymes that degrade plant cell walls; it lacks type III and IV secretion systems, related toxins and an N-acyl homoserine lactones-based communication system. The genome contains remarkably few mobile elements, indicating a low rate of recent gene transfer that is presumably due to adaptation to a stable, low-stress microenvironment.


Asunto(s)
Azoarcus/genética , Azoarcus/fisiología , Genoma Bacteriano/genética , Familia de Multigenes/genética , Fijación del Nitrógeno/genética , Carbono/metabolismo , Biblioteca Genómica , Hierro/metabolismo , Datos de Secuencia Molecular , Fijación del Nitrógeno/fisiología , Oryza/microbiología , Raíces de Plantas/microbiología , Análisis de Secuencia de ADN/métodos , Simbiosis/genética , Simbiosis/fisiología
14.
Nat Biotechnol ; 24(8): 997-1004, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16878126

RESUMEN

Alcanivorax borkumensis is a cosmopolitan marine bacterium that uses oil hydrocarbons as its exclusive source of carbon and energy. Although barely detectable in unpolluted environments, A. borkumensis becomes the dominant microbe in oil-polluted waters. A. borkumensis SK2 has a streamlined genome with a paucity of mobile genetic elements and energy generation-related genes, but with a plethora of genes accounting for its wide hydrocarbon substrate range and efficient oil-degradation capabilities. The genome further specifies systems for scavenging of nutrients, particularly organic and inorganic nitrogen and oligo-elements, biofilm formation at the oil-water interface, biosurfactant production and niche-specific stress responses. The unique combination of these features provides A. borkumensis SK2 with a competitive edge in oil-polluted environments. This genome sequence provides the basis for the future design of strategies to mitigate the ecological damage caused by oil spills.


Asunto(s)
Mapeo Cromosómico/métodos , Genoma Bacteriano/genética , Halomonadaceae/genética , Halomonadaceae/metabolismo , Hidrocarburos/metabolismo , Secuencia de Bases , Biodegradación Ambiental , Datos de Secuencia Molecular , Homología de Secuencia de Ácido Nucleico
15.
Appl Environ Microbiol ; 71(10): 5969-82, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16204511

RESUMEN

A regulatory network of Sinorhizobium meliloti genes involved in adaptation to iron-limiting conditions and the involvement of the rhizobial iron regulator gene (rirA) were analyzed by mutation and microarray analyses. A constructed S. meliloti rirA mutant exhibited growth defects and enhanced H2O2 sensitivity in the presence of iron, but symbiotic nitrogen fixation was not affected. To identify iron-responsive and RirA-regulated S. meliloti genes, a transcriptome approach using whole-genome microarrays was used. Altogether, 45 genes were found to be jointly derepressed by mutation of rirA and under different iron-limited conditions. As expected, a number of genes involved in iron transport (e.g., hmuPSTU, shmR, rhbABCDEF, rhtX, and rhtA) and also genes with predicted functions in energy metabolism (e.g., fixN3, fixP3, and qxtAB) and exopolysaccharide production (e.g., exoY and exoN) were found in this group of genes. In addition, the iron deficiency response of S. meliloti also involved rirA-independent expression changes, including repression of the S. meliloti flagellar regulon. Finally, the RirA modulon also includes genes that are not iron responsive, including a gene cluster putatively involved in Fe-S cluster formation (sufA, sufS, sufD, sufC, and sufB).


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Reguladoras del Hierro/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Proteínas Bacterianas/genética , Medios de Cultivo , Perfilación de la Expresión Génica , Hierro/metabolismo , Proteínas Reguladoras del Hierro/genética , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteoma , Transcripción Genética
16.
J Bacteriol ; 186(11): 3609-20, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15150249

RESUMEN

Sinorhizobium meliloti is an alpha-proteobacterium able to induce nitrogen-fixing nodules on roots of specific legumes. In order to propagate in the soil and for successful symbiotic interaction the bacterium needs to sequester metals like iron and manganese from its environment. The metal uptake has to be in turn tightly regulated to avoid toxic effects. In this report we describe the characterization of a chromosomal region of S. meliloti encoding the sitABCD operon and the putative regulatory fur gene. It is generally assumed that the sitABCD operon encodes a metal-type transporter and that the fur gene is involved in iron ion uptake regulation. A constructed S. meliloti sitA deletion mutant was found to be growth dependent on Mn(II) and to a lesser degree on Fe(II). The sitA promoter was strongly repressed by Mn(II), with dependence on Fur, and moderately by Fe(II). Applying a genome-wide S. meliloti microarray it was shown that in the fur deletion mutant 23 genes were up-regulated and 10 genes were down-regulated when compared to the wild-type strain. Among the up-regulated genes only the sitABCD operon could be associated with metal uptake. On the other hand, the complete rhbABCDEF operon, which is involved in siderophore synthesis, was identified among the down-regulated genes. Thus, in S. meliloti Fur is not a global repressor of iron uptake. Under symbiotic conditions the sitA promoter was strongly expressed and the S. meliloti sitA mutant exhibited an attenuated nitrogen fixation activity resulting in a decreased fresh weight of the host plant Medicago sativa.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Manganeso/farmacología , Operón , Proteínas Represoras/genética , Sinorhizobium meliloti/genética , Transcripción Genética , Hierro/metabolismo , Hierro/farmacología , Manganeso/metabolismo , Fijación del Nitrógeno , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Regiones Promotoras Genéticas , Sinorhizobium meliloti/metabolismo , Simbiosis
17.
Mol Plant Microbe Interact ; 17(3): 292-303, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15000396

RESUMEN

Sinorhizobium meliloti is an alpha-proteobacterium that alternates between a free-living phase in bulk soil or in the rhizosphere of plants and a symbiotic phase within the host plant cells, where the bacteria ultimately differentiate into nitrogen-fixing organelle-like cells, called bacteroids. As a step toward understanding the physiology of S. meliloti in its free-living and symbiotic forms and the transition between the two, gene expression profiles were determined under two sets of biological conditions: growth under oxic versus microoxic conditions, and in free-living versus symbiotic state. Data acquisition was based on both macro- and microarrays. Transcriptome profiles highlighted a profound modification of gene expression during bacteroid differentiation, with 16% of genes being altered. The data are consistent with an overall slow down of bacteroid metabolism during adaptation to symbiotic life and acquisition of nitrogen fixation capability. A large number of genes of unknown function, including potential regulators, that may play a role in symbiosis were identified. Transcriptome profiling in response to oxygen limitation indicated that up to 5% of the genes were oxygen regulated. However, the microoxic and bacteroid transcriptomes only partially overlap, implying that oxygen contributes to a limited extent to the control of symbiotic gene expression.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Oxígeno/farmacología , Sinorhizobium meliloti/genética , Simbiosis/genética , Adaptación Biológica/genética , Adaptación Biológica/fisiología , Perfilación de la Expresión Génica/métodos , Fijación del Nitrógeno/genética , Fijación del Nitrógeno/fisiología , Filogenia , Análisis por Matrices de Proteínas/métodos , Proteoma/genética , Proteoma/metabolismo , Sinorhizobium meliloti/metabolismo , Simbiosis/efectos de los fármacos , Simbiosis/fisiología , Transcripción Genética/genética
18.
J Biotechnol ; 106(2-3): 255-68, 2003 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-14651866

RESUMEN

Based on the complete Sinorhizobium meliloti genome sequence we established DNA microarrays as a comprehensive tool for systematic genome-wide gene expression analysis in S. meliloti 1021. For these PCR fragment-based microarrays, called Sm6kPCR, a collection of probes for the 6207 predicted protein-coding genes consisting of 6046 gene-specific PCR fragments and 161 70 mer oligonucleotides was arrayed in high density on glass slides. To obtain these PCR fragments primer pairs were designed to amplify internal gene-specific DNA fragments of 80-350 bp. Additionally, these primers were characterized by a 5' extension that allowed for reamplification using standard primers after the first amplification employing the specific primers. In order to ascertain the quality of the Sm6kPCR microarrays and to validate gene expression studies in S. meliloti parallel hybridizations based on RNA samples obtained from cells cultured under identical conditions were performed. In addition, gene expression in S. meliloti in response to an osmotic upshift imposed by the addition of 0.38 M NaCl was monitored. 137 genes were identified showing significant changes in gene expression resulting from the osmotic upshift. From these genes 52 were induced and 85 genes were repressed. Among the genes displaying different RNA levels some functional groups could be identified that are particularly remarkable. Repression was observed for 8 genes related to motility and chemotaxis, 7 genes encoding amino acid biosynthesis enzymes and 15 genes involved in iron uptake whereas 14 genes involved in transport of small molecules and 4 genes related to polysaccharide biosynthesis were induced.


Asunto(s)
Mapeo Cromosómico/instrumentación , Perfilación de la Expresión Génica/instrumentación , Regulación Bacteriana de la Expresión Génica/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Sinorhizobium meliloti/genética , Equilibrio Hidroelectrolítico/genética , Mapeo Cromosómico/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Perfilación de la Expresión Génica/métodos , Genoma Bacteriano , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Reacción en Cadena de la Polimerasa/instrumentación , Reacción en Cadena de la Polimerasa/métodos , Sinorhizobium meliloti/clasificación , Especificidad de la Especie
19.
Curr Opin Biotechnol ; 14(2): 200-5, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12732321

RESUMEN

Following an interaction with rhizobial soil bacteria, legume plants are able to form a novel organ, termed the root nodule. This organ houses the rhizobial microsymbionts, which perform the biological nitrogen fixation process resulting in the incorporation of ammonia into plant organic molecules. Recent advances in genomics have opened exciting new perspectives in this field by providing the complete gene inventory of two rhizobial microsymbionts. The complete genome sequences of Mesorhizobium loti, the symbiont of several Lotus species, and Sinorhizobium meliloti, the symbiont of alfalfa, were determined and annotated in detail. For legume macrosymbionts, expressed sequence tag projects and expression analyses using DNA arrays in conjunction with proteomics approaches have identified numerous genes involved in root nodule formation and nitrogen fixation. The isolation of legume genes by tagging or positional cloning recently allowed the identification of genes that control the very early steps of root nodule organogenesis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Genes Bacterianos , Genes Fúngicos , Genómica/métodos , Micorrizas/genética , Micorrizas/metabolismo , Rhizobium/genética , Rhizobium/metabolismo , Fijación del Nitrógeno/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...