Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Nat Cell Biol ; 25(6): 823-835, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37291267

RESUMEN

The endoplasmic reticulum (ER) forms a dynamic network that contacts other cellular membranes to regulate stress responses, calcium signalling and lipid transfer. Here, using high-resolution volume electron microscopy, we find that the ER forms a previously unknown association with keratin intermediate filaments and desmosomal cell-cell junctions. Peripheral ER assembles into mirror image-like arrangements at desmosomes and exhibits nanometre proximity to keratin filaments and the desmosome cytoplasmic plaque. ER tubules exhibit stable associations with desmosomes, and perturbation of desmosomes or keratin filaments alters ER organization, mobility and expression of ER stress transcripts. These findings indicate that desmosomes and the keratin cytoskeleton regulate the distribution, function and dynamics of the ER network. Overall, this study reveals a previously unknown subcellular architecture defined by the structural integration of ER tubules with an epithelial intercellular junction.


Asunto(s)
Citoesqueleto , Desmosomas , Desmosomas/química , Desmosomas/metabolismo , Desmosomas/ultraestructura , Citoesqueleto/metabolismo , Queratinas/metabolismo , Filamentos Intermedios/metabolismo , Filamentos Intermedios/ultraestructura , Retículo Endoplásmico/metabolismo
3.
Mol Biol Cell ; 33(11): ar94, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35544300

RESUMEN

Arrays of actin filaments (F-actin) near the apical surface of epithelial cells (medioapical arrays) contribute to apical constriction and morphogenesis throughout phylogeny. Here, superresolution approaches (grazing incidence structured illumination, GI-SIM, and lattice light sheet, LLSM) microscopy resolve individual, fluorescently labeled F-actin and bipolar myosin filaments that drive amnioserosa cell shape changes during dorsal closure in Drosophila. In expanded cells, F-actin and myosin form loose, apically domed meshworks at the plasma membrane. The arrays condense as cells contract, drawing the domes into the plane of the junctional belts. As condensation continues, individual filaments are no longer uniformly apparent. As cells expand, arrays of actomyosin are again resolved-some F-actin turnover likely occurs, but a large fraction of existing filaments rearrange. In morphologically isotropic cells, actin filaments are randomly oriented and during contraction are drawn together but remain essentially randomly oriented. In anisotropic cells, largely parallel actin filaments are drawn closer to one another. Our images offer unparalleled resolution of F-actin in embryonic tissue, show that medioapical arrays are tightly apposed to the plasma membrane and are continuous with meshworks of lamellar F-actin. Medioapical arrays thereby constitute modified cell cortex. In concert with other tagged array components, superresolution imaging of live specimens will offer new understanding of cortical architecture and function.


Asunto(s)
Actinas , Actomiosina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animales , Drosophila/metabolismo , Microscopía , Miosinas/metabolismo
5.
Nature ; 599(7883): 141-146, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34616042

RESUMEN

Cells contain hundreds of organelles and macromolecular assemblies. Obtaining a complete understanding of their intricate organization requires the nanometre-level, three-dimensional reconstruction of whole cells, which is only feasible with robust and scalable automatic methods. Here, to support the development of such methods, we annotated up to 35 different cellular organelle classes-ranging from endoplasmic reticulum to microtubules to ribosomes-in diverse sample volumes from multiple cell types imaged at a near-isotropic resolution of 4 nm per voxel with focused ion beam scanning electron microscopy (FIB-SEM)1. We trained deep learning architectures to segment these structures in 4 nm and 8 nm per voxel FIB-SEM volumes, validated their performance and showed that automatic reconstructions can be used to directly quantify previously inaccessible metrics including spatial interactions between cellular components. We also show that such reconstructions can be used to automatically register light and electron microscopy images for correlative studies. We have created an open data and open-source web repository, 'OpenOrganelle', to share the data, computer code and trained models, which will enable scientists everywhere to query and further improve automatic reconstruction of these datasets.


Asunto(s)
Microscopía Electrónica de Rastreo/métodos , Microscopía Electrónica de Rastreo/normas , Orgánulos/ultraestructura , Animales , Biomarcadores/análisis , Células COS , Tamaño de la Célula , Chlorocebus aethiops , Conjuntos de Datos como Asunto , Aprendizaje Profundo , Retículo Endoplásmico , Células HeLa , Humanos , Difusión de la Información , Microscopía Fluorescente , Microtúbulos , Reproducibilidad de los Resultados , Ribosomas
6.
Nature ; 599(7883): 147-151, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34616045

RESUMEN

Understanding cellular architecture is essential for understanding biology. Electron microscopy (EM) uniquely visualizes cellular structures with nanometre resolution. However, traditional methods, such as thin-section EM or EM tomography, have limitations in that they visualize only a single slice or a relatively small volume of the cell, respectively. Focused ion beam-scanning electron microscopy (FIB-SEM) has demonstrated the ability to image small volumes of cellular samples with 4-nm isotropic voxels1. Owing to advances in the precision and stability of FIB milling, together with enhanced signal detection and faster SEM scanning, we have increased the volume that can be imaged with 4-nm voxels by two orders of magnitude. Here we present a volume EM atlas at such resolution comprising ten three-dimensional datasets for whole cells and tissues, including cancer cells, immune cells, mouse pancreatic islets and Drosophila neural tissues. These open access data (via OpenOrganelle2) represent the foundation of a field of high-resolution whole-cell volume EM and subsequent analyses, and we invite researchers to explore this atlas and pose questions.


Asunto(s)
Conjuntos de Datos como Asunto , Difusión de la Información , Microscopía Electrónica de Rastreo , Orgánulos/ultraestructura , Animales , Línea Celular , Células Cultivadas , Drosophila melanogaster/citología , Drosophila melanogaster/ultraestructura , Femenino , Aparato de Golgi/ultraestructura , Humanos , Interfase , Islotes Pancreáticos/citología , Masculino , Ratones , Microscopía Electrónica de Rastreo/métodos , Microscopía Electrónica de Rastreo/normas , Microtúbulos/ultraestructura , Neuroglía/ultraestructura , Neuronas/ultraestructura , Publicación de Acceso Abierto , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/ultraestructura , Ribosomas/ultraestructura , Vesículas Sinápticas/ultraestructura , Linfocitos T Citotóxicos/citología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/ultraestructura
7.
Elife ; 102021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34545811

RESUMEN

Activity-driven changes in the neuronal surface glycoproteome are known to occur with synapse formation, plasticity, and related diseases, but their mechanistic basis and significance are unclear. Here, we observed that N-glycans on surface glycoproteins of dendrites shift from immature to mature forms containing sialic acid in response to increased neuronal activation. In exploring the basis of these N-glycosylation alterations, we discovered that they result from the growth and proliferation of Golgi satellites scattered throughout the dendrite. Golgi satellites that formed during neuronal excitation were in close association with endoplasmic reticulum (ER) exit sites and early endosomes and contained glycosylation machinery without the Golgi structural protein, GM130. They functioned as distal glycosylation stations in dendrites, terminally modifying sugars either on newly synthesized glycoproteins passing through the secretory pathway or on surface glycoproteins taken up from the endocytic pathway. These activities led to major changes in the dendritic surface of excited neurons, impacting binding and uptake of lectins, as well as causing functional changes in neurotransmitter receptors such as nicotinic acetylcholine receptors. Neural activity thus boosts the activity of the dendrite's satellite micro-secretory system by redistributing Golgi enzymes involved in glycan modifications into peripheral Golgi satellites. This remodeling of the neuronal surface has potential significance for synaptic plasticity, addiction, and disease.


Asunto(s)
Dendritas/metabolismo , Aparato de Golgi/metabolismo , Glicoproteínas de Membrana/metabolismo , Animales , Autoantígenos/metabolismo , Proliferación Celular , Retículo Endoplásmico/metabolismo , Glicosilación , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Polisacáridos/metabolismo , Proteoma/metabolismo , Ratas , Receptores Nicotínicos/metabolismo
8.
Nat Commun ; 12(1): 4502, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301937

RESUMEN

Cells in many tissues, such as bone, muscle, and placenta, fuse into syncytia to acquire new functions and transcriptional programs. While it is known that fused cells are specialized, it is unclear whether cell-fusion itself contributes to programmatic-changes that generate the new cellular state. Here, we address this by employing a fusogen-mediated, cell-fusion system to create syncytia from undifferentiated cells. RNA-Seq analysis reveals VSV-G-induced cell fusion precedes transcriptional changes. To gain mechanistic insights, we measure the plasma membrane surface area after cell-fusion and observe it diminishes through increases in endocytosis. Consequently, glucose transporters internalize, and cytoplasmic glucose and ATP transiently decrease. This reduced energetic state activates AMPK, which inhibits YAP1, causing transcriptional-reprogramming and cell-cycle arrest. Impairing either endocytosis or AMPK activity prevents YAP1 inhibition and cell-cycle arrest after fusion. Together, these data demonstrate plasma membrane diminishment upon cell-fusion causes transient nutrient stress that may promote transcriptional-reprogramming independent from extrinsic cues.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Proteínas del Envoltorio Viral/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Transporte Biológico , Fusión Celular , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Células Gigantes/metabolismo , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Ratones , RNA-Seq/métodos , Transducción de Señal/genética , Factores de Transcripción/genética , Proteínas del Envoltorio Viral/genética , Proteínas Señalizadoras YAP
9.
Cell ; 184(9): 2412-2429.e16, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33852913

RESUMEN

Cellular versatility depends on accurate trafficking of diverse proteins to their organellar destinations. For the secretory pathway (followed by approximately 30% of all proteins), the physical nature of the vessel conducting the first portage (endoplasmic reticulum [ER] to Golgi apparatus) is unclear. We provide a dynamic 3D view of early secretory compartments in mammalian cells with isotropic resolution and precise protein localization using whole-cell, focused ion beam scanning electron microscopy with cryo-structured illumination microscopy and live-cell synchronized cargo release approaches. Rather than vesicles alone, the ER spawns an elaborate, interwoven tubular network of contiguous lipid bilayers (ER exit site) for protein export. This receptacle is capable of extending microns along microtubules while still connected to the ER by a thin neck. COPII localizes to this neck region and dynamically regulates cargo entry from the ER, while COPI acts more distally, escorting the detached, accelerating tubular entity on its way to joining the Golgi apparatus through microtubule-directed movement.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Microtúbulos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Transporte Biológico Activo , Células HeLa , Humanos , Transporte de Proteínas
11.
ACS Cent Sci ; 5(9): 1602-1613, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31572787

RESUMEN

Rhodamine dyes exist in equilibrium between a fluorescent zwitterion and a nonfluorescent lactone. Tuning this equilibrium toward the nonfluorescent lactone form can improve cell-permeability and allow creation of "fluorogenic" compounds-ligands that shift to the fluorescent zwitterion upon binding a biomolecular target. An archetype fluorogenic dye is the far-red tetramethyl-Si-rhodamine (SiR), which has been used to create exceptionally useful labels for advanced microscopy. Here, we develop a quantitative framework for the development of new fluorogenic dyes, determining that the lactone-zwitterion equilibrium constant (K L-Z) is sufficient to predict fluorogenicity. This rubric emerged from our analysis of known fluorophores and yielded new fluorescent and fluorogenic labels with improved performance in cellular imaging experiments. We then designed a novel fluorophore-Janelia Fluor 526 (JF526)-with SiR-like properties but shorter fluorescence excitation and emission wavelengths. JF526 is a versatile scaffold for fluorogenic probes including ligands for self-labeling tags, stains for endogenous structures, and spontaneously blinking labels for super-resolution immunofluorescence. JF526 constitutes a new label for advanced microscopy experiments, and our quantitative framework will enable the rational design of other fluorogenic probes for bioimaging.

12.
J Cell Biol ; 218(8): 2583-2599, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31227594

RESUMEN

Lipid droplets (LDs) are neutral lipid storage organelles that transfer lipids to various organelles including peroxisomes. Here, we show that the hereditary spastic paraplegia protein M1 Spastin, a membrane-bound AAA ATPase found on LDs, coordinates fatty acid (FA) trafficking from LDs to peroxisomes through two interrelated mechanisms. First, M1 Spastin forms a tethering complex with peroxisomal ABCD1 to promote LD-peroxisome contact formation. Second, M1 Spastin recruits the membrane-shaping ESCRT-III proteins IST1 and CHMP1B to LDs via its MIT domain to facilitate LD-to-peroxisome FA trafficking, possibly through IST1- and CHMP1B-dependent modifications in LD membrane morphology. Furthermore, LD-to-peroxisome FA trafficking mediated by M1 Spastin is required to relieve LDs of lipid peroxidation. M1 Spastin's dual roles in tethering LDs to peroxisomes and in recruiting ESCRT-III components to LD-peroxisome contact sites for FA trafficking may underlie the pathogenesis of diseases associated with defective FA metabolism in LDs and peroxisomes.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Ácidos Grasos/metabolismo , Gotas Lipídicas/metabolismo , Peroxisomas/metabolismo , Espastina/metabolismo , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , Transporte Biológico , Células HeLa , Humanos , Hidrólisis , Ácidos Láuricos/metabolismo , Modelos Biológicos , Proteínas Mutantes/metabolismo , Proteínas Oncogénicas/metabolismo , Espastina/química
13.
Cell ; 177(6): 1522-1535.e14, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31130380

RESUMEN

Metabolic coordination between neurons and astrocytes is critical for the health of the brain. However, neuron-astrocyte coupling of lipid metabolism, particularly in response to neural activity, remains largely uncharacterized. Here, we demonstrate that toxic fatty acids (FAs) produced in hyperactive neurons are transferred to astrocytic lipid droplets by ApoE-positive lipid particles. Astrocytes consume the FAs stored in lipid droplets via mitochondrial ß-oxidation in response to neuronal activity and turn on a detoxification gene expression program. Our findings reveal that FA metabolism is coupled in neurons and astrocytes to protect neurons from FA toxicity during periods of enhanced activity. This coordinated mechanism for metabolizing FAs could underlie both homeostasis and a variety of disease states of the brain.


Asunto(s)
Astrocitos/metabolismo , Ácidos Grasos/metabolismo , Neuronas/metabolismo , Animales , Apolipoproteínas E/metabolismo , Apolipoproteínas E/fisiología , Astrocitos/fisiología , Encéfalo/metabolismo , Ácidos Grasos/toxicidad , Homeostasis , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Oxidación-Reducción , Ratas , Ratas Sprague-Dawley
14.
Curr Opin Cell Biol ; 50: 94-101, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29567348

RESUMEN

At the center of the secretory pathway, the Golgi complex ensures correct processing and sorting of cargos toward their final destination. Cargos are diverse in topology, function and destination. A remarkable feature of the Golgi complex is its ability to sort and process these diverse cargos destined for secretion, the cell surface, the lysosome, or retained within the secretory pathway. Just as these cargos are diverse so also are their sorting requirements and thus, their trafficking route. There is no one-size-fits-all sorting scheme in the Golgi. We propose a coexistence of models to reconcile these diverse needs. We review examples of differential sorting mediated by proteins and lipids. Additionally, we highlight recent technological developments that have potential to uncover new modes of transport.


Asunto(s)
Aparato de Golgi/metabolismo , Transporte de Proteínas , Animales , Membrana Celular/metabolismo , Humanos , Metabolismo de los Lípidos , Lisosomas/metabolismo , Proteínas/metabolismo , Vías Secretoras
15.
Science ; 354(6311)2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27789813

RESUMEN

The endoplasmic reticulum (ER) is an expansive, membrane-enclosed organelle that plays crucial roles in numerous cellular functions. We used emerging superresolution imaging technologies to clarify the morphology and dynamics of the peripheral ER, which contacts and modulates most other intracellular organelles. Peripheral components of the ER have classically been described as comprising both tubules and flat sheets. We show that this system consists almost exclusively of tubules at varying densities, including structures that we term ER matrices. Conventional optical imaging technologies had led to misidentification of these structures as sheets because of the dense clustering of tubular junctions and a previously uncharacterized rapid form of ER motion. The existence of ER matrices explains previous confounding evidence that had indicated the occurrence of ER "sheet" proliferation after overexpression of tubular junction-forming proteins.


Asunto(s)
Retículo Endoplásmico/ultraestructura , Microtúbulos/ultraestructura , Animales , Células COS , Calnexina/química , Calnexina/metabolismo , Chlorocebus aethiops , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Células HeLa , Humanos , Microscopía Confocal/métodos , Microscopía Electrónica , Microtúbulos/química , Microtúbulos/metabolismo , Imagen Molecular/métodos , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo
16.
Proc Natl Acad Sci U S A ; 110(48): E4591-600, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24218552

RESUMEN

Clathrin-mediated endocytosis takes place through the recruitment of cargo molecules into a growing clathrin-coated pit (CCP). Despite the importance of this process to all mammalian cells, little is yet known about the interaction dynamics between cargo and CCPs. These interactions are difficult to study because CCPs display a large degree of lifetime heterogeneity and the interactions with cargo molecules are time dependent. We use single-molecule total internal reflection fluorescence microscopy, in combination with automatic detection and tracking algorithms, to directly visualize the recruitment of individual voltage-gated potassium channels into forming CCPs in living cells. We observe association and dissociation of individual channels with a CCP and, occasionally, their internalization. Contrary to widespread ideas, cargo often escapes from a pit before abortive CCP termination or endocytic vesicle production. Thus, the binding times of cargo molecules associating to CCPs are much shorter than the overall endocytic process. By measuring tens of thousands of capturing events, we build the distribution of capture times and the times that cargo remains confined to a CCP. An analytical stochastic model is developed and compared with the measured distributions. Due to the dynamic nature of the pit, the model is non-Markovian and it displays long-tail power law statistics. The measured distributions and model predictions are in excellent agreement over more than five orders of magnitude. Our findings identify one source of the large heterogeneities in CCP dynamics and provide a mechanism for the anomalous diffusion of proteins in the plasma membrane.


Asunto(s)
Invaginaciones Cubiertas de la Membrana Celular/metabolismo , Endocitosis/fisiología , Modelos Biológicos , Imagen Molecular/métodos , Proteínas Fluorescentes Verdes , Células HEK293 , Humanos , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente , Canales de Potasio/metabolismo , Unión Proteica , Factores de Tiempo
17.
Mol Biol Cell ; 24(17): 2703-13, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23864710

RESUMEN

In mammalian cells, the cortical endoplasmic reticulum (cER) is a network of tubules and cisterns that lie in close apposition to the plasma membrane (PM). We provide evidence that PM domains enriched in underlying cER function as trafficking hubs for insertion and removal of PM proteins in HEK 293 cells. By simultaneously visualizing cER and various transmembrane protein cargoes with total internal reflectance fluorescence microscopy, we demonstrate that the majority of exocytotic delivery events for a recycled membrane protein or for a membrane protein being delivered to the PM for the first time occur at regions enriched in cER. Likewise, we observed recurring clathrin clusters and functional endocytosis of PM proteins preferentially at the cER-enriched regions. Thus the cER network serves to organize the molecular machinery for both insertion and removal of cell surface proteins, highlighting a novel role for these unique cellular microdomains in membrane trafficking.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas , Movimiento Celular/fisiología , Clatrina/metabolismo , Endocitosis/fisiología , Exocitosis/fisiología , Células HEK293 , Humanos , Canal de Potasio Kv1.4/metabolismo , Microscopía Fluorescente , Receptores de Transferrina/metabolismo , Canales de Potasio Shab/metabolismo
18.
Biophys J ; 103(8): 1727-34, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-23083716

RESUMEN

The Kv2.1 voltage-gated potassium channel forms stable clusters on the surface of different mammalian cells. Even though these cell-surface structures have been observed for almost a decade, little is known about the mechanism by which cells maintain them. We measure the distribution of domain sizes to study the kinetics of their growth. Using a Fokker-Planck formalism, we find no evidence for a feedback mechanism present to maintain specific domain radii. Instead, the size of Kv2.1 clusters is consistent with a model where domain size is established by fluctuations in the trafficking machinery. These results are further validated using likelihood and Akaike weights to select the best model for the kinetics of domain growth consistent with our experimental data.


Asunto(s)
Canales de Potasio Shab/metabolismo , Membrana Celular/química , Células HEK293 , Humanos , Modelos Teóricos , Estructura Terciaria de Proteína , Transporte de Proteínas , Canales de Potasio Shab/química
19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(4 Pt 1): 041924, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22680515

RESUMEN

We describe a method for the analysis of the distribution of displacements, i.e., the propagators, of single-particle tracking measurements for the case of obstructed subdiffusion in two-dimensional membranes. The propagator for the percolation cluster is compared with a two-component mobility model against Monte Carlo simulations. To account for diffusion in the presence of obstacle concentrations below the percolation threshold, a propagator that includes the transient motion in finite percolation clusters and hopping between obstacle-induced compartments is derived. Finally, these models are shown to be effective in the analysis of Kv2.1 channel diffusive measurements in the membrane of living mammalian cells.


Asunto(s)
Imagen Molecular/instrumentación , Nanopartículas/ultraestructura , Refractometría/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Movimiento (Física)
20.
Mol Biol Cell ; 23(15): 2917-29, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22648171

RESUMEN

Voltage-gated K(+) (Kv) channels regulate membrane potential in many cell types. Although the channel surface density and location must be well controlled, little is known about Kv channel delivery and retrieval on the cell surface. The Kv2.1 channel localizes to micron-sized clusters in neurons and transfected human embryonic kidney (HEK) cells, where it is nonconducting. Because Kv2.1 is postulated to be involved in soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated membrane fusion, we examined the hypothesis that these surface clusters are specialized platforms involved in membrane protein trafficking. Total internal reflection-based fluorescence recovery after photobleaching studies and quantum dot imaging of single Kv2.1 channels revealed that Kv2.1-containing vesicles deliver cargo at the Kv2.1 surface clusters in both transfected HEK cells and hippocampal neurons. More than 85% of cytoplasmic and recycling Kv2.1 channels was delivered to the cell surface at the cluster perimeter in both cell types. At least 85% of recycling Kv1.4, which, unlike Kv2.1, has a homogeneous surface distribution, is also delivered here. Actin depolymerization resulted in Kv2.1 exocytosis at cluster-free surface membrane. These results indicate that one nonconducting function of Kv2.1 is to form microdomains involved in membrane protein trafficking. This study is the first to identify stable cell surface platforms involved in ion channel trafficking.


Asunto(s)
Canal de Potasio Kv1.4/metabolismo , Neuronas/metabolismo , Proteínas SNARE/metabolismo , Canales de Potasio Shab/metabolismo , Membrana Celular/metabolismo , Células HEK293 , Humanos , Activación del Canal Iónico , Fusión de Membrana/fisiología , Potenciales de la Membrana , Microscopía Confocal , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA