Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 8(3): 477-488, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38332027

RESUMEN

Successful alien species may experience a period of quiescence, known as the lag phase, before becoming invasive and widespread. The existence of lags introduces severe uncertainty in risk analyses of aliens as the present state of species is a poor predictor of future distributions, invasion success and impact. Predicting a species' ability to invade and pose negative impacts requires a quantitative understanding of the commonality and magnitude of lags, environmental factors and mechanisms likely to terminate lag. Using herbarium and climate data, we analysed over 5,700 time series (species × regions) in 3,505 naturalized plant species from nine regions in temperate and tropical climates to quantify lags and test whether there have been shifts in the species' climatic space during the transition from the lag phase to the expansion phase. Lags were identified in 35% of the assessed invasion events. We detected phylogenetic signals for lag phases in temperate climate regions and that annual self-fertilizing species were less likely to experience lags. Where lags existed, they had an average length of 40 years and a maximum of 320 years. Lengthy lags (>100 years) were more likely to occur in perennial plants and less frequent in self-pollinating species. For 98% of the species with a lag phase, the climate spaces sampled during the lag period differed from those in the expansion phase based on the assessment of centroid shifts or degree of climate space overlap. Our results highlight the importance of functional traits for the onset of the expansion phase and suggest that climate discovery may play a role in terminating the lag phase. However, other possibilities, such as sampling issues and climate niche shifts, cannot be ruled out.


Asunto(s)
Cambio Climático , Especies Introducidas , Filogenia , Clima Tropical , Plantas
2.
Nat Ecol Evol ; 8(5): 888-900, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38409318

RESUMEN

Forecasting the risks of climate change for species and ecosystems is necessary for developing targeted conservation strategies. Previous risk assessments mapped the exposure of the global land surface to changes in climate. However, this procedure is unlikely to robustly identify priority areas for conservation actions because nonlinear physiological responses and colimitation processes ensure that ecological changes will not map perfectly to the forecast climatic changes. Here, we combine ecophysiological growth models of 135,153 vascular plant species and plant growth-form information to transform ambient and future climatologies into phytoclimates, which describe the ability of climates to support the plant growth forms that characterize terrestrial ecosystems. We forecast that 33% to 68% of the global land surface will experience a significant change in phytoclimate by 2070 under representative concentration pathways RCP 2.6 and RCP 8.5, respectively. Phytoclimates without present-day analogue are forecast to emerge on 0.3-2.2% of the land surface and 0.1-1.3% of currently realized phytoclimates are forecast to disappear. Notably, the geographic pattern of change, disappearance and novelty of phytoclimates differs markedly from the pattern of analogous trends in climates detected by previous studies, thereby defining new priorities for conservation actions and highlighting the limits of using untransformed climate change exposure indices in ecological risk assessments. Our findings suggest that a profound transformation of the biosphere is underway and emphasize the need for a timely adaptation of biodiversity management practices.


Asunto(s)
Cambio Climático , Ecosistema , Conservación de los Recursos Naturales , Medición de Riesgo , Predicción , Plantas , Modelos Biológicos , Desarrollo de la Planta
3.
Nat Commun ; 15(1): 1330, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351066

RESUMEN

Human factors and plant characteristics are important drivers of plant invasions, which threaten ecosystem integrity, biodiversity and human well-being. However, while previous studies often examined a limited number of factors or focused on a specific invasion stage (e.g., naturalization) for specific regions, a multi-factor and multi-stage analysis at the global scale is lacking. Here, we employ a multi-level framework to investigate the interplay between plant characteristics (genome size, Grime's adaptive CSR-strategies and native range size) and economic use and how these factors collectively affect plant naturalization and invasion success worldwide. While our findings derived from structural equation models highlight the substantial contribution of human assistance in both the naturalization and spread of invasive plants, we also uncovered the pivotal role of species' adaptive strategies among the factors studied, and the significantly varying influence of these factors across invasion stages. We further revealed that the effects of genome size on plant invasions were partially mediated by species adaptive strategies and native range size. Our study provides insights into the complex and dynamic process of plant invasions and identifies its key drivers worldwide.


Asunto(s)
Ciudadanía , Ecosistema , Humanos , Tamaño del Genoma , Especies Introducidas , Ecología , Biodiversidad , Plantas/genética
5.
Nature ; 627(8003): 335-339, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418873

RESUMEN

The latitudinal diversity gradient (LDG) dominates global patterns of diversity1,2, but the factors that underlie the LDG remain elusive. Here we use a unique global dataset3 to show that vascular plants on oceanic islands exhibit a weakened LDG and explore potential mechanisms for this effect. Our results show that traditional physical drivers of island biogeography4-namely area and isolation-contribute to the difference between island and mainland diversity at a given latitude (that is, the island species deficit), as smaller and more distant islands experience reduced colonization. However, plant species with mutualists are underrepresented on islands, and we find that this plant mutualism filter explains more variation in the island species deficit than abiotic factors. In particular, plant species that require animal pollinators or microbial mutualists such as arbuscular mycorrhizal fungi contribute disproportionately to the island species deficit near the Equator, with contributions decreasing with distance from the Equator. Plant mutualist filters on species richness are particularly strong at low absolute latitudes where mainland richness is highest, weakening the LDG of oceanic islands. These results provide empirical evidence that mutualisms, habitat heterogeneity and dispersal are key to the maintenance of high tropical plant diversity and mediate the biogeographic patterns of plant diversity on Earth.


Asunto(s)
Biodiversidad , Mapeo Geográfico , Islas , Plantas , Simbiosis , Animales , Conjuntos de Datos como Asunto , Micorrizas/fisiología , Plantas/microbiología , Polinización , Clima Tropical , Océanos y Mares , Filogeografía
6.
Int J Biometeorol ; 68(4): 761-775, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38285109

RESUMEN

Whereas temporal variability of plant phenology in response to climate change has already been well studied, the spatial variability of phenology is not well understood. Given that phenological shifts may affect biotic interactions, there is a need to investigate how the variability in environmental factors relates to the spatial variability in herbaceous species' phenology by at the same time considering their functional traits to predict their general and species-specific responses to future climate change. In this project, we analysed phenology records of 148 herbaceous species, which were observed for a single year by the PhenObs network in 15 botanical gardens. For each species, we characterised the spatial variability in six different phenological stages across gardens. We used boosted regression trees to link these variabilities in phenology to the variability in environmental parameters (temperature, latitude and local habitat conditions) as well as species traits (seed mass, vegetative height, specific leaf area and temporal niche) hypothesised to be related to phenology variability. We found that spatial variability in the phenology of herbaceous species was mainly driven by the variability in temperature but also photoperiod was an important driving factor for some phenological stages. In addition, we found that early-flowering and less competitive species characterised by small specific leaf area and vegetative height were more variable in their phenology. Our findings contribute to the field of phenology by showing that besides temperature, photoperiod and functional traits are important to be included when spatial variability of herbaceous species is investigated.


Asunto(s)
Fotoperiodo , Hojas de la Planta , Temperatura , Estaciones del Año , Hojas de la Planta/fisiología , Fenotipo , Plantas , Cambio Climático
7.
Nat Commun ; 14(1): 7890, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036522

RESUMEN

A prominent hypothesis in ecology is that larger species ranges are found in more variable climates because species develop broader environmental tolerances, predicting a positive range size-temperature variability relationship. However, this overlooks the extreme temperatures that variable climates impose on species, with upper or lower thermal limits more likely to be exceeded. Accordingly, we propose the 'temperature range squeeze' hypothesis, predicting a negative range size-temperature variability relationship. We test these contrasting predictions by relating 88,000 elevation range sizes of vascular plants in 44 mountains to short- and long-term temperature variation. Consistent with our hypothesis, we find that species' range size is negatively correlated with diurnal temperature range. Accurate predictions of short-term temperature variation will become increasingly important for extinction risk assessment in the future.


Asunto(s)
Clima , Ecosistema , Temperatura , Calor , Cambio Climático
8.
Nat Commun ; 14(1): 6244, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828007

RESUMEN

Darwin's naturalization conundrum describes two seemingly contradictory hypotheses regarding whether alien species closely or distantly related to native species should be more likely to naturalize in regional floras. Both expectations have accumulated empirical support, and whether such apparent inconsistency can be reconciled at the global scale is unclear. Here, using 219,520 native and 9,531 naturalized alien plant species across 487 globally distributed regions, we found a latitudinal gradient in Darwin's naturalization conundrum. Naturalized alien plant species are more closely related to native species at higher latitudes than they are at lower latitudes, indicating a greater influence of preadaptation in harsher climates. Human landscape modification resulted in even steeper latitudinal clines by selecting aliens distantly related to natives in warmer and drier regions. Our results demonstrate that joint consideration of climatic and anthropogenic conditions is critical to reconciling Darwin's naturalization conundrum.


Asunto(s)
Ecosistema , Magnoliopsida , Humanos , Ciudadanía , Especies Introducidas , Plantas
9.
Sci Adv ; 9(40): eadi1897, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37792943

RESUMEN

Plant introductions outside their native ranges by humans have led to substantial ecological consequences. While we have gained considerable knowledge about intercontinental introductions, the distribution and determinants of intracontinental aliens remain poorly understood. Here, we studied naturalized (i.e., self-sustaining) intracontinental aliens using native and alien floras of 243 mainland regions in North America, South America, Europe, and Australia. We revealed that 4510 plant species had intracontinental origins, accounting for 3.9% of all plant species and 56.7% of all naturalized species in these continents. In North America and Europe, the numbers of intracontinental aliens peaked at mid-latitudes, while the proportion peaked at high latitudes in Europe. Notably, we found predominant poleward naturalization, primarily due to larger native species pools in low-latitudes. Geographic and climatic distances constrained the naturalization of intracontinental aliens in Australia, Europe, and North America, but not in South America. These findings suggest that poleward naturalizations will accelerate, as high latitudes become suitable for more plant species due to climate change.


Asunto(s)
Ciudadanía , Cambio Climático , Humanos , Europa (Continente) , Plantas , América del Norte , Ecosistema
10.
Nat Ecol Evol ; 7(10): 1633-1644, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37652998

RESUMEN

Human activities are causing global biotic redistribution, translocating species and providing them with opportunities to establish populations beyond their native ranges. Species originating from certain global regions, however, are disproportionately represented among naturalized aliens. The evolutionary imbalance hypothesis posits that differences in absolute fitness among biogeographic divisions determine outcomes when biotas mix. Here, we compile data from native and alien distributions for nearly the entire global seed plant flora and find that biogeographic conditions predicted to drive evolutionary imbalance act alongside climate and anthropogenic factors to shape flows of successful aliens among regional biotas. Successful aliens tend to originate from large, biodiverse regions that support abundant populations and where species evolve against a diverse backdrop of competitors and enemies. We also reveal that these same native distribution characteristics are shared among the plants that humans select for cultivation and economic use. In addition to influencing species' innate potentials as invaders, we therefore suggest that evolutionary imbalance shapes plants' relationships with humans, impacting which species are translocated beyond their native distributions.


Asunto(s)
Biodiversidad , Especies Introducidas , Humanos , Clima , Plantas , Semillas
11.
Nature ; 619(7970): 545-550, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37438518

RESUMEN

Oceanic island floras are well known for their morphological peculiarities and exhibit striking examples of trait evolution1-3. These morphological shifts are commonly attributed to insularity and are thought to be shaped by the biogeographical processes and evolutionary histories of oceanic islands2,4. However, the mechanisms through which biogeography and evolution have shaped the distribution and diversity of plant functional traits remain unclear5. Here we describe the functional trait space of the native flora of an oceanic island (Tenerife, Canary Islands, Spain) using extensive field and laboratory measurements, and relate it to global trade-offs in ecological strategies. We find that the island trait space exhibits a remarkable functional richness but that most plants are concentrated around a functional hotspot dominated by shrubs with a conservative life-history strategy. By dividing the island flora into species groups associated with distinct biogeographical distributions and diversification histories, our results also suggest that colonization via long-distance dispersal and the interplay between inter-island dispersal and archipelago-level speciation processes drive functional divergence and trait space expansion. Contrary to our expectations, speciation via cladogenesis has led to functional convergence, and therefore only contributes marginally to functional diversity by densely packing trait space around shrubs. By combining biogeography, ecology and evolution, our approach opens new avenues for trait-based insights into how dispersal, speciation and persistence shape the assembly of entire native island floras.


Asunto(s)
Biodiversidad , Islas , Océanos y Mares , Plantas , Especiación Genética , Rasgos de la Historia de Vida , Fenotipo , Filogenia , Plantas/clasificación , España , Ecología
12.
New Phytol ; 239(6): 2389-2403, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37438886

RESUMEN

Karyological characteristics are among the traits underpinning the invasion success of vascular plants. Using 11 049 species, we tested the effects of genome size and ploidy levels on plant naturalization (species forming self-sustaining populations where they are not native) and invasion (naturalized species spreading rapidly and having environmental impact). The probability that a species naturalized anywhere in the world decreased with increasing monoploid genome size (DNA content of a single chromosome set). Naturalized or invasive species with intermediate monoploid genomes were reported from many regions, but those with either small or large genomes occurred in fewer regions. By contrast, large holoploid genome sizes (DNA content of the unreplicated gametic nucleus) constrained naturalization but favoured invasion. We suggest that a small genome is an advantage during naturalization, being linked to traits favouring adaptation to local conditions, but for invasive spread, traits associated with a large holoploid genome, where the impact of polyploidy may act, facilitate long-distance dispersal and competition with other species.


Asunto(s)
Ecosistema , Tracheophyta , Tamaño del Genoma , Ciudadanía , Ploidias , Especies Introducidas , ADN
13.
Proc Natl Acad Sci U S A ; 120(30): e2300981120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459510

RESUMEN

Assessing the distribution of geographically restricted and evolutionarily unique species and their underlying drivers is key to understanding biogeographical processes and critical for global conservation prioritization. Here, we quantified the geographic distribution and drivers of phylogenetic endemism for ~320,000 seed plants worldwide and identified centers and drivers of evolutionarily young (neoendemism) and evolutionarily old endemism (paleoendemism). Tropical and subtropical islands as well as tropical mountain regions displayed the world's highest phylogenetic endemism. Most tropical rainforest regions emerged as centers of paleoendemism, while most Mediterranean-climate regions showed high neoendemism. Centers where high neo- and paleoendemism coincide emerged on some oceanic and continental fragment islands, in Mediterranean-climate regions and parts of the Irano-Turanian floristic region. Global variation in phylogenetic endemism was well explained by a combination of past and present environmental factors (79.8 to 87.7% of variance explained) and most strongly related to environmental heterogeneity. Also, warm and wet climates, geographic isolation, and long-term climatic stability emerged as key drivers of phylogenetic endemism. Neo- and paleoendemism were jointly explained by climatic and geological history. Long-term climatic stability promoted the persistence of paleoendemics, while the isolation of oceanic islands and their unique geological histories promoted neoendemism. Mountainous regions promoted both neo- and paleoendemism, reflecting both diversification and persistence over time. Our study provides insights into the evolutionary underpinnings of biogeographical patterns in seed plants and identifies the areas on Earth with the highest evolutionary and biogeographical uniqueness-key information for setting global conservation priorities.


Asunto(s)
Biodiversidad , Evolución Biológica , Filogenia , Semillas , Geología
14.
New Phytol ; 240(4): 1548-1560, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37264995

RESUMEN

Plant life and growth forms (shortened to 'plant forms') represent key functional strategies of plants in relation to their environment and provide important insights into the ecological constraints acting on the distribution of biodiversity. Despite their functional importance, how the spectra of plant forms contribute to global gradients of plant diversity is unresolved. Using a novel dataset comprising > 295 000 species, we quantify the contribution of different plant forms to global gradients of vascular plant diversity. Furthermore, we establish how plant form distributions in different biogeographical regions are associated with contemporary and paleoclimate conditions, environmental heterogeneity and phylogeny. We find a major shift in representation of woody perennials in tropical latitudes to herb-dominated floras in temperate and boreal regions, following a sharp latitudinal gradient in plant form diversity from the tropics to the poles. We also find significant functional differences between regions, mirroring life and growth form responses to environmental conditions, which is mostly explained by contemporary climate (18-87%), and phylogeny (6-62%), with paleoclimate and heterogeneity playing a lesser role (< 23%). This research highlights variation in the importance of different plant forms to diversity gradients world-wide, shedding light on the ecological and evolutionary pressures constraining plant-trait distributions.


Asunto(s)
Evolución Biológica , Tracheophyta , Filogenia , Biodiversidad , Clima , Plantas , Clima Tropical
15.
Sci Rep ; 13(1): 6718, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37185616

RESUMEN

Quantitative assessments of endemism, evolutionary distinctiveness and extinction threat underpin global conservation prioritization for well-studied taxa, such as birds, mammals, and amphibians. However, such information is unavailable for most of the world's taxa. This is the case for the Orchidaceae, a hyperdiverse and cosmopolitan family with incomplete phylogenetic and threat information. To define conservation priorities, we present a framework based on phylogenetic and taxonomic measures of distinctiveness and rarity based on the number of regions and the area of occupancy. For 25,434 orchid species with distribution data (89.3% of the Orchidaceae), we identify the Neotropics as hotspots for richness, New Guinea as a hotspot for evolutionary distinctiveness, and several islands that contain many rare and distinct species. Orchids have a similar proportion of monotypic genera as other Angiosperms, however, more taxonomically distinct orchid species are found in a single region. We identify 278 species in need of immediate conservation actions and find that more than 70% of these do not currently have an IUCN conservation assessment and are not protected in ex-situ collections at Botanical Gardens. Our study highlights locations and orchid species in urgent need of conservation and demonstrates a framework that can be applied to other data-deficient taxa.


Asunto(s)
Conservación de los Recursos Naturales , Orchidaceae , Animales , Biodiversidad , Filogenia , Orchidaceae/genética , Evolución Biológica , Mamíferos
16.
Nat Commun ; 14(1): 2090, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045818

RESUMEN

While the regional distribution of non-native species is increasingly well documented for some taxa, global analyses of non-native species in local assemblages are still missing. Here, we use a worldwide collection of assemblages from five taxa - ants, birds, mammals, spiders and vascular plants - to assess whether the incidence, frequency and proportions of naturalised non-native species depend on type and intensity of land use. In plants, assemblages of primary vegetation are least invaded. In the other taxa, primary vegetation is among the least invaded land-use types, but one or several other types have equally low levels of occurrence, frequency and proportions of non-native species. High land use intensity is associated with higher non-native incidence and frequency in primary vegetation, while intensity effects are inconsistent for other land-use types. These findings highlight the potential dual role of unused primary vegetation in preserving native biodiversity and in conferring resistance against biological invasions.


Asunto(s)
Hormigas , Ecosistema , Animales , Especies Introducidas , Incidencia , Biodiversidad , Mamíferos
17.
Ecol Lett ; 26(4): 504-515, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36740842

RESUMEN

Current models of island biogeography treat endemic and non-endemic species as if they were functionally equivalent, focussing primarily on species richness. Thus, the functional composition of island biotas in relation to island biogeographical variables remains largely unknown. Using plant trait data (plant height, leaf area and flower length) for 895 native species in the Canary Islands, we related functional trait distinctiveness and climate rarity for endemic and non-endemic species and island ages. Endemics showed a link to climatically rare conditions that is consistent with island geological change through time. However, functional trait distinctiveness did not differ between endemics and non-endemics and remained constant with island age. Thus, there is no obvious link between trait distinctiveness and occupancy of rare climates, at least for the traits measured here, suggesting that treating endemic and non-endemic species as functionally equivalent in island biogeography is not fundamentally wrong.


Asunto(s)
Clima , Plantas , Fenotipo , Hojas de la Planta , España , Islas
18.
New Phytol ; 237(4): 1432-1445, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36375492

RESUMEN

Despite the paramount role of plant diversity for ecosystem functioning, biogeochemical cycles, and human welfare, knowledge of its global distribution is still incomplete, hampering basic research and biodiversity conservation. Here, we used machine learning (random forests, extreme gradient boosting, and neural networks) and conventional statistical methods (generalized linear models and generalized additive models) to test environment-related hypotheses of broad-scale vascular plant diversity gradients and to model and predict species richness and phylogenetic richness worldwide. To this end, we used 830 regional plant inventories including c. 300 000 species and predictors of past and present environmental conditions. Machine learning showed a superior performance, explaining up to 80.9% of species richness and 83.3% of phylogenetic richness, illustrating the great potential of such techniques for disentangling complex and interacting associations between the environment and plant diversity. Current climate and environmental heterogeneity emerged as the primary drivers, while past environmental conditions left only small but detectable imprints on plant diversity. Finally, we combined predictions from multiple modeling techniques (ensemble predictions) to reveal global patterns and centers of plant diversity at multiple resolutions down to 7774 km2 . Our predictive maps provide accurate estimates of global plant diversity available at grain sizes relevant for conservation and macroecology.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Filogenia , Clima , Modelos Lineales , Plantas
19.
Commun Biol ; 5(1): 1209, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357567

RESUMEN

Island biogeography has classically focused on abiotic drivers of species distributions. However, recent work has highlighted the importance of mutualistic biotic interactions in structuring island floras. The limited occurrence of specialist pollinators and mycorrhizal fungi have been found to restrict plant colonization on oceanic islands. Another important mutualistic association occurs between nearly 15,000 plant species and nitrogen-fixing (N-fixing) bacteria. Here, we look for evidence that N-fixing bacteria limit establishment of plants that associate with them. Globally, we find that plants associating with N-fixing bacteria are disproportionately underrepresented on islands, with a 22% decline. Further, the probability of N-fixing plants occurring on islands decreases with island isolation and, where present, the proportion of N-fixing plant species decreases with distance for large, but not small islands. These findings suggest that N-fixing bacteria serve as a filter to plant establishment on islands, altering global plant biogeography, with implications for ecosystem development and introduction risks.


Asunto(s)
Micorrizas , Bacterias Fijadoras de Nitrógeno , Ecosistema , Simbiosis , Plantas/microbiología , Nitrógeno
20.
Nat Ecol Evol ; 6(11): 1723-1732, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36253544

RESUMEN

The redistribution of alien species across the globe accelerated with the start of European colonialism. European powers were responsible for the deliberate and accidental transportation, introduction and establishment of alien species throughout their occupied territories and the metropolitan state. Here, we show that these activities left a lasting imprint on the global distribution of alien plants. Specifically, we investigated how four European empires (British, Spanish, Portuguese and Dutch) structured current alien floras worldwide. We found that compositional similarity is higher than expected among regions that once were occupied by the same empire. Further, we provide strong evidence that floristic similarity between regions occupied by the same empire increases with the time a region was occupied. Network analysis suggests that historically more economically or strategically important regions have more similar alien floras across regions occupied by an empire. Overall, we find that European colonial history is still detectable in alien floras worldwide.


Asunto(s)
Colonialismo , Especies Introducidas , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...