Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Investig Med ; 72(1): 47-56, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37858974

RESUMEN

The immune microenvironment plays an important role in the regulation of diseases. The characterization of the cellular composition of immune cell infiltrates in diseases and respective models is a major task in pathogenesis research and diagnostics. For the assessment of immune cell populations in tissues, fluorescence-activated cell sorting (FACS) or immunohistochemistry (IHC) are the two most common techniques presently applied, but they are cost intensive, laborious, and sometimes limited by the availability of suitable antibodies. Complementary rapid qPCR-based approaches exist for the human situation but are lacking for experimental mouse models. Accordingly, we developed a robust, rapid RT-qPCR-based approach to determine and quantify the abundance of prominent immune cell populations such as T cells, helper T (Th) cells, cytotoxic T cells, Th1 cells, B cells, and macrophages in mouse tissues. The results were independently validated by the gold standards IHC and FACS in corresponding tissues and showed high concordance.


Asunto(s)
Macrófagos , Linfocitos T Colaboradores-Inductores , Humanos , Ratones , Animales
2.
Inflamm Bowel Dis ; 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38142236

RESUMEN

BACKGROUND: Tofacitinib, as inhibitor of Janus kinases (JAK), interrupts the transmission of numerous pro-inflammatory cytokines involved in the pathogenesis of inflammatory bowel diseases (IBD). Therefore, tofacitinib provides a potent option to treat ulcerative colitis (UC). Besides the anti-inflammatory potential, inhibition of widespread JAKs carries the risk of side effects. Macrophages are involved in the form of different subtypes in inflammation, wound healing, and even coagulation. This study aimed to explore the balanced use of tofacitinib in M1-like as well as M2-like macrophages of healthy donors and patients with IBD. METHODS: Monocytes of healthy donors and patients with chronic courses of IBD were obtained from blood samples. Macrophage colony-stimulating factor (M-CSF)-derived macrophages were treated with tofacitinib (1 µM, 5 µM, 10 µM) and polarized with either lipopolysaccharide and interferon (IFN)-γ towards M1-like-phenotype or with interleukin (IL)-4 towards M2-like-phenotype. ELISA and flow cytometry were used to evaluate cytokine levels and surface molecules. RESULTS: Tofacitinib had a modulating effect on M1-like macrophages whereby the effect on pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß, IL-12, IL-23) was less pronounced than the induction of anti-inflammatory IL-10. However, during M2-like polarization tofacitinib impaired the development of the corresponding phenotype becoming evident through decreased IL-10 levels and CD206 expression in treated macrophages. In both phenotypes, tofacitinib strongly downregulated the expression of immunostimulatory molecules (CD80, CD86, CD83, CD40). Furthermore, a dose-dependent correlation between treatment with tofacitinib and expressed tissue factor was noticed. CONCLUSIONS: Tofacitinib influences both polarizations (M1/M2) and the expression of tissue factor in a dose-dependent manner.


This study revealed a dose-dependent effect of tofacitinib on both M1-like and M2-like polarization, resulting in a decreased development of the corresponding phenotype. Furthermore, the applied dose of tofacitinib correlated with the expressed tissue factor in M1-like macrophages.

3.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38003220

RESUMEN

Inflammatory bowel disease (IBD) is an autoimmune disease that leads to severe bowel symptoms and complications. Currently, there is no effective treatment, and the exact cause of IBD remains unclear. In the last decades, numerous studies have confirmed that flavonoids can have a positive impact on the treatment of IBD. Therefore, this study investigated the protective effect of a flavonoid combination of apigenin and epigallocatechin-3-gallate (EGCG) on IBD. In vitro studies in which Caco-2 cell monolayers were incubated with different concentrations of flavonoids found that the flavonoid-treated group exhibited increased transepithelial electrical resistance (TEER) at high concentrations, indicating a protective effect on the barrier function of the intestinal epithelium. In vivo studies showed that flavonoids significantly attenuated inflammatory levels in both chronic and acute hapten-mediated experimental colitis models in a time- and dose-dependent manner. In addition, the activity of myeloperoxidase (MPO) and the level of proinflammatory cytokines in the colon tissue were significantly reduced. Interestingly, the levels of anti-inflammatory cytokines were also dramatically increased. Finally, flavonoids were found to positively modulate the composition of the gut microbiota in the colon. Therefore, a combination of flavonoids could be a promising therapeutic agent for the future adjunctive treatment of IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Flavonoides/farmacología , Flavonoides/uso terapéutico , Apigenina/farmacología , Apigenina/uso terapéutico , Células CACO-2 , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Citocinas , Inflamación/tratamiento farmacológico , Sulfato de Dextran , Modelos Animales de Enfermedad
4.
Asian J Pharm Sci ; 18(4): 100831, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37588990

RESUMEN

Ulcerative colitis (UC) is a type of inflammatory bowel disease characterized by inflammation, ulcers and irritation of the mucosal lining. Oral drug delivery in UC encounters challenges because of multifaceted barriers. Dexamethasone-loaded galactosylated-PLGA/Eudragit S100/pullulan nanocargoes (Dexa-GP/ES/Pu NCs) have been developed with a dual stimuli-sensitive coating responsive to both colonic pH and microbiota, and an underneath galactosylated-PLGA core (GP). The galactose ligand of the GP preferentially binds to the macrophage galactose type-lectin-C (MGL-2) surface receptor. Therefore, both stimuli and ligand-mediated targeting facilitate nanocargoes to deliver Dexa specifically to the colon with enhanced macrophage uptake. Modified emulsion method coupled with a solvent evaporation coating technique was employed to prepare Dexa-GP/ES/Pu NCs. The nanocargoes were tested using in vitro, ex vivo techniques and dextran sodium sulfate (DSS) induced UC model. Prepared nanocargoes had desired physicochemical properties, drug release, cell uptake and cellular viability. Investigations using a DSS-colitis model showed high localization and mitigation of colitis with downregulation of NF-ĸB and COX-2, and restoration of clinical, histopathological, biochemical indices, antioxidant balance, microbial alterations, FTIR spectra, and epithelial junctions' integrity. Thus, Dexa-GP/ES/Pu NCs found to be biocompatible nanocargoes capable of delivering drugs to the inflamed colon with unique targeting properties for prolonged duration.

5.
Gut ; 72(11): 2081-2094, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37541770

RESUMEN

IL-3 has been reported to be involved in various inflammatory disorders, but its role in inflammatory bowel disease (IBD) has not been addressed so far. Here, we determined IL-3 expression in samples from patients with IBD and studied the impact of Il3 or Il3r deficiency on T cell-dependent experimental colitis. We explored the mechanical, cytoskeletal and migratory properties of Il3r -/- and Il3r +/+ T cells using real-time deformability cytometry, atomic force microscopy, scanning electron microscopy, fluorescence recovery after photobleaching and in vitro and in vivo cell trafficking assays. We observed that, in patients with IBD, the levels of IL-3 in the inflamed mucosa were increased. In vivo, experimental chronic colitis on T cell transfer was exacerbated in the absence of Il-3 or Il-3r signalling. This was attributable to Il-3r signalling-induced changes in kinase phosphorylation and actin cytoskeleton structure, resulting in increased mechanical deformability and enhanced egress of Tregs from the inflamed colon mucosa. Similarly, IL-3 controlled mechanobiology in human Tregs and was associated with increased mucosal Treg abundance in patients with IBD. Collectively, our data reveal that IL-3 signaling exerts an important regulatory role at the interface of biophysical and migratory T cell features in intestinal inflammation and suggest that this might be an interesting target for future intervention.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Linfocitos T Reguladores , Receptores de Interleucina-3/metabolismo , Interleucina-3/metabolismo , Inflamación/metabolismo , Colitis/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo
6.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36901885

RESUMEN

Inflammatory bowel disease (IBD) is a group of disorders that cause chronic non-specific inflammation in the gastrointestinal (GI) tract, primarily affecting the ileum and colon. The incidence of IBD has risen sharply in recent years. Despite continuous research efforts over the past decades, the aetiology of IBD is still not fully understood and only a limited number of drugs are available for its treatment. Flavonoids, a ubiquitous class of natural chemicals found in plants, have been widely used in the prevention and treatment of IBD. However, their therapeutic efficacy is unsatisfactory due to poor solubility, instability, rapid metabolism, and rapid systemic elimination. With the development of nanomedicine, nanocarriers can efficiently encapsulate various flavonoids and subsequently form nanoparticles (NPs), which greatly improves the stability and bioavailability of flavonoids. Recently, progress has also been made in the methodology of biodegradable polymers that can be used to fabricate NPs. As a result, NPs can significantly enhance the preventive or therapeutic effects of flavonoids on IBD. In this review, we aim to evaluate the therapeutic effect of flavonoid NPs on IBD. Furthermore, we discuss possible challenges and future perspectives.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Nanopartículas , Humanos , Flavonoides/farmacología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Colon , Polímeros/farmacología
7.
Biomater Sci ; 11(4): 1373-1397, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36594554

RESUMEN

Colon mucosal inflammation attracts a plethora of immune cells with overexpressed surface receptors. Colon drug targeting can be aided by exploiting overexpressed cell surface receptors which improve drug site retention for an extended period. We developed Tofacitinib citrate (Tofa) loaded transferrin anchored PLGA nanocarriers (Tofa-P/tfr NCs) via the quality by design (QbD) approach for specific binding to the transferrin receptor (TFR-1/CD71) overexpressed on macrophages and colon epithelial cells. Nanocarriers were produced using a modified emulsion-evaporation method with a protein adsorption technique. The QbD-risk assessment method was adopted to screen the variables impacting the quality of nanocarriers, which were then optimized using the 33 Box-Behnken design of experiment (DOE). The obtained nanocarriers have the desired physicochemical properties, drug entrapment, tfr adsorption, stability, mucoadhesion, and sustained drug release pattern at pH 7.4 (colon pH). In vitro cell-based studies confirmed the cellular biocompatibility and considerable uptake of nanocarriers by colon and macrophage cells; the uptake was diminished by anti-CD71/TFR1 antibodies. Tofa-P/tfr NCs demonstrated good colon targeting potential in the dextran sulfate sodium (DSS) induced ulcerative colitis (UC) model. In vivo therapeutic efficacy against UC was established through restored morphological and histopathological scores, vascular integrity, antioxidant levels, hematological parameters, pro-inflammatory cytokine/marker levels, and microbial indices. Tofa-P/tfr NCs shut down the elevated STAT-1 and TFR-1 levels, demonstrating the enhanced efficacy of the encapsulated drug. Thus, the QbD-driven approach successfully developed Tofa-P/tfr NCs with good potential to mitigate mucosal inflammation by targeting colon and macrophage surface receptors.


Asunto(s)
Colitis Ulcerosa , Colitis , Humanos , Animales , Transferrina , Sistemas de Liberación de Medicamentos , Colitis Ulcerosa/inducido químicamente , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Macrófagos/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Modelos Animales de Enfermedad
8.
Gut ; 72(2): 275-294, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35241625

RESUMEN

OBJECTIVE: Increased apoptotic shedding has been linked to intestinal barrier dysfunction and development of inflammatory bowel diseases (IBD). In contrast, physiological cell shedding allows the renewal of the epithelial monolayer without compromising the barrier function. Here, we investigated the role of live cell extrusion in epithelial barrier alterations in IBD. DESIGN: Taking advantage of conditional GGTase and RAC1 knockout mice in intestinal epithelial cells (Pggt1b iΔIEC and Rac1 iΔIEC mice), intravital microscopy, immunostaining, mechanobiology, organoid techniques and RNA sequencing, we analysed cell shedding alterations within the intestinal epithelium. Moreover, we examined human gut tissue and intestinal organoids from patients with IBD for cell shedding alterations and RAC1 function. RESULTS: Epithelial Pggt1b deletion led to cytoskeleton rearrangement and tight junction redistribution, causing cell overcrowding due to arresting of cell shedding that finally resulted in epithelial leakage and spontaneous mucosal inflammation in the small and to a lesser extent in the large intestine. Both in vivo and in vitro studies (knockout mice, organoids) identified RAC1 as a GGTase target critically involved in prenylation-dependent cytoskeleton dynamics, cell mechanics and epithelial cell shedding. Moreover, inflamed areas of gut tissue from patients with IBD exhibited funnel-like structures, signs of arrested cell shedding and impaired RAC1 function. RAC1 inhibition in human intestinal organoids caused actin alterations compatible with arresting of cell shedding. CONCLUSION: Impaired epithelial RAC1 function causes cell overcrowding and epithelial leakage thus inducing chronic intestinal inflammation. Epithelial RAC1 emerges as key regulator of cytoskeletal dynamics, cell mechanics and intestinal cell shedding. Modulation of RAC1 might be exploited for restoration of epithelial integrity in the gut of patients with IBD.


Asunto(s)
Citoesqueleto , Enfermedades Inflamatorias del Intestino , Animales , Humanos , Ratones , Células Epiteliales , Inflamación , Enfermedades Inflamatorias del Intestino/genética , Mucosa Intestinal/fisiología , Ratones Noqueados , Proteína de Unión al GTP rac1
9.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36430411

RESUMEN

The mechanism of RNA interference (RNAi) could represent a breakthrough in the therapy of all diseases that arise from a gene defect or require the inhibition of a specific gene expression. In particular, small interfering RNA (siRNA) offers an attractive opportunity to achieve a new milestone in the therapy of human diseases. The limitations of siRNA, such as poor stability, inefficient cell uptake, and undesired immune activation, as well as the inability to specifically reach the target tissue in the body, can be overcome by further developments in the field of nanoparticulate drug delivery. Therefore, types of surface modified siRNA nanoparticles are presented and illustrate how a more efficient and safer distribution of siRNA at the target site is possible by modifying the surface properties of nanoparticles with antibodies. However, the development of such efficient and safe delivery strategies is currently still a major challenge. In consideration of that, this review article aims to demonstrate the function and targeted delivery of siRNA nanoparticles, focusing on the surface modification via antibodies, various lipid- and polymer-components, and the therapeutic effects of these delivery systems.


Asunto(s)
Nanopartículas , Polímeros , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Sistemas de Liberación de Medicamentos , Anticuerpos , Lípidos
10.
Cells ; 11(18)2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36139354

RESUMEN

Gut-related diseases like ulcerative colitis, Crohn's disease, or colorectal cancer affect millions of people worldwide. It is an ongoing process finding causes leading to the development and manifestation of those disorders. This is highly relevant since understanding molecular processes and signalling pathways offers new opportunities in finding novel ways to interfere with and apply new pharmaceuticals. Memory T cells (mT cells) and their pro-inflammatory properties have been proven to play an important role in gastrointestinal diseases and are therefore increasingly spotlighted. This review focuses on mT cells and their subsets in the context of disease pathogenesis and maintenance. It illustrates the network of regulatory proteins and metabolites connecting mT cells with other cell types and tissue compartments. Furthermore, the crosstalk with various microbes will be a subject of discussion. Characterizing mT cell interactions will help to further elucidate the sophisticated molecular and cellular networking system in the intestine and may present new ideas for future research approaches to control gut-related diseases.


Asunto(s)
Colitis Ulcerosa , Enfermedades Gastrointestinales , Colitis Ulcerosa/patología , Humanos , Células T de Memoria , Preparaciones Farmacéuticas
11.
J Crohns Colitis ; 16(12): 1893-1910, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-35793807

RESUMEN

BACKGROUND AND AIMS: Colorectal cancer [CRC] is one of the most frequent malignancies, but the molecular mechanisms driving cancer growth are incompletely understood. We characterised the roles of the cytokine IL-9 and Th9 cells in regulating CRC development. METHODS: CRC patient samples and samples from AOM/DSS treated mice were analysed for expression of IL-9, CD3, and PU.1 by FACS analysis and immunohistochemistry. IL-9 citrine reporter mice, IL-9 knockout mice, and PU.1 and GATA3 CD4-Cre conditional knockout mice were studied in the AOM/DSS model. DNA minicircles or hyper-IL-6 were used for overexpression of cytokines in vivo. Effects of IL-6 and IL-9 were determined in organoid and T cell cultures. Claudin2/3 expression was studied by western blotting and bacterial translocation by FISH. RESULTS: We uncovered a significant expansion of IL-9- and PU.1-expressing mucosal Th9 cells in CRC patients, with particularly high levels in patients with colitis-associated neoplasias. PU.1+ Th9 cells accumulated in experimental colorectal neoplasias. Deficiency of IL-9 or inactivation of PU.1 in T cells led to impaired tumour growth in vivo, suggesting a protumoral role of Th9 cells. In contrast, GATA3 inactivation did not affect Th9-mediated tumour growth. Mechanistically, IL-9 controls claudin2/3 expression and T cell-derived IL-6 production in colorectal tumours. IL-6 abrogated the anti-proliferative effects of IL-9 in epithelial organoids in vivo. IL-9-producing Th9 cells expand in CRC and control IL-6 production by T cells. CONCLUSIONS: IL-9 is a crucial regulator of tumour growth in colitis-associated neoplasias and emerges as potential target for therapy.


Asunto(s)
Colitis , Neoplasias Colorrectales , Ratones , Animales , Interleucina-9/metabolismo , Interleucina-6/metabolismo , Linfocitos T Colaboradores-Inductores/patología , Colitis/patología , Células Epiteliales/metabolismo , Citocinas/metabolismo , Neoplasias Colorrectales/patología , Ratones Noqueados , Ratones Endogámicos C57BL
12.
Inflamm Bowel Dis ; 28(11): 1637-1646, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35699622

RESUMEN

BACKGROUND: Clinical challenges in inflammatory bowel diseases require microscopic in vivo evaluation of inflammation. Here, label-free imaging holds great potential, and recently, our group demonstrated the advantage of using in vivo multiphoton endomicroscopy for longitudinal animal studies. This article extends our previous work by in-depth analysis of label-free tissue features in common colitis models quantified by the multiphoton colitis score (MCS). METHODS: Fresh mucosal tissues were evaluated from acute and chronic dextran sulfate sodium (DSS), TNBS, oxazolone, and transfer colitis. Label-free imaging was performed by using second harmonic generation and natural autofluorescence. Morphological changes in mucosal crypts, collagen fibers, and cellularity in the stroma were analyzed and graded. RESULTS: Our approach discriminated between healthy (mean MCS = 2.5) and inflamed tissue (mean MCS > 5) in all models, and the MCS was validated by hematoxylin and eosin scoring of the same samples (85.2% agreement). Moreover, specific characteristics of each phenotype were identified. While TNBS, oxazolone, and transfer colitis showed high cellularity in stroma, epithelial damage seemed specific for chronic, acute DSS and transfer colitis. Crypt deformations were mostly observed in acute DSS. CONCLUSIONS: Quantification of label-free imaging is promising for in vivo endoscopy. In the future, this could be valuable for monitoring of inflammatory pathways in murine models, which is highly relevant for the development of new inflammatory bowel disease therapeutics.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Sulfato de Dextran , Oxazolona , Modelos Animales de Enfermedad , Inflamación
13.
Expert Opin Drug Deliv ; 19(3): 235-245, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35184617

RESUMEN

INTRODUCTION: Inflammatory bowel disease (IBD) is the inflammatory condition of the gastrointestinal tract particularly affecting the colon and the ileum. IBD patients can have a very poor quality of life because of the limited therapeutic efficacy and accompanied adverse effects. AREAS COVERED: The potential ways to employ nanoparticles to deliver drugs to a certain site of inflammation are discussed. The focus was set on the microenvironment in the gut as well as the mucosa, epithelial layer and the microbiota. Moreover, experimental animal colitis models were nanoparticles were used as a potential treatment are presented. Lastly, challenges for the potential clinical use in humans are discussed. EXPERT OPINION: Although there still remain many open questions e.g. regarding the toxicity, the metabolism or the pharmacokinetics of nanoparticles further research on this topic could overcome these challenges. For example, instead of synthetically engineered particles, biodegradable components could be used. Since there have been a lot pf promising results in the recent years, we are sure that in the future nanoparticles will be developed in a way to ensure safe and targeted delivery of drugs to the site of inflammation.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Nanopartículas , Animales , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Calidad de Vida
14.
Metabolites ; 12(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35050153

RESUMEN

Inflammatory bowel disease (IBD) is a comprehensive term for chronic or relapsing inflammatory diseases occurring in the intestinal tract, generally including Crohn's disease (CD) and ulcerative colitis (UC). Presently, the pathogenesis of IBD is unknown, yet multiple factors have been reported to be related with the development of IBD. Flavonoids are phytochemicals with biological activity, which are ubiquitously distributed in edible plants, such as fruits and vegetables. Recent studies have demonstrated impressively that flavonoids have anti-IBD effects through multiple mechanisms. These include anti-inflammatory and antioxidant actions; the preservation of the epithelial barrier integrity, the intestinal immunomodulatory property, and the shaping microbiota composition and function. In addition, a few studies have shown the impact of flavonoids on enterohormones release; nonetheless, there is hardly any work showing the link between flavonoids, enterohormones release and IBD. So far, the interaction between flavonoids, enterohormones and IBD is elucidated for the first time in this review. Furthermore, the inference can be drawn that flavonoids may protect against IBD through modulating enterohormones, such as glucagon-like peptide 1 (GLP-1), GLP-2, dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors), ghrelin and cholecystokinin (CCK). In conclusion, this manuscript explores a possible mechanism of flavonoids protecting against IBD.

15.
Transplantation ; 106(6): 1180-1192, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34468430

RESUMEN

BACKGROUND: Platelets play an important role in the pathogenesis of inflammatory and proliferative vascular changes. The aim of this study was to investigate whether human platelets are able to induce transplant arteriosclerosis in a humanized C57/Bl6-Rag2-/-γc-/- mouse xenograft model. METHODS: Nonactivated and in vitro-activated human platelets were analyzed and phenotyped for surface markers by flow cytometry. Side branches of human mammary arteries were implanted into the infrarenal aorta of recipients, followed by daily application of human platelets and histological analyzed on day 30 after transplantation. RESULTS: Human platelets collected by apheresis had low levels of platelet activation markers. However, after in vitro activation, expression was markedly increased. Sixty minutes after injection in recipient mice, nonactivated human platelets become significantly activated. Increased adhesion of platelets to the vascular endothelium was detected by in vivo fluorescence microscopy. After intravenous injection of nonactivated or activated platelets, human xenografts showed pronounced intimal proliferation. Immunohistological analysis showed that the group treated with activated human platelets exhibited significantly increased intragraft protein expression of intracellular adhesion molecule-1 and platelet-derived growth factor receptor beta and smooth muscle cell migration into the neointima. CONCLUSIONS: These data demonstrate that an isolated daily application of both in vivo- and in vitro-activated human platelets results in the development of transplant arteriosclerosis in a humanized mouse transplantation model.


Asunto(s)
Arteriosclerosis , Plaquetas , Animales , Aorta Abdominal/patología , Arteriosclerosis/etiología , Arteriosclerosis/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Neointima
16.
Immunity ; 54(11): 2531-2546.e5, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34644537

RESUMEN

Alternatively activated macrophages (AAMs) contribute to the resolution of inflammation and tissue repair. However, molecular pathways that govern their differentiation have remained incompletely understood. Here, we show that uncoupling protein-2-mediated mitochondrial reprogramming and the transcription factor GATA3 specifically controlled the differentiation of pro-resolving AAMs in response to the alarmin IL-33. In macrophages, IL-33 sequentially triggered early expression of pro-inflammatory genes and subsequent differentiation into AAMs. Global analysis of underlying signaling events revealed that IL-33 induced a rapid metabolic rewiring of macrophages that involved uncoupling of the respiratory chain and increased production of the metabolite itaconate, which subsequently triggered a GATA3-mediated AAM polarization. Conditional deletion of GATA3 in mononuclear phagocytes accordingly abrogated IL-33-induced differentiation of AAMs and tissue repair upon muscle injury. Our data thus identify an IL-4-independent and GATA3-dependent pathway in mononuclear phagocytes that results from mitochondrial rewiring and controls macrophage plasticity and the resolution of inflammation.


Asunto(s)
Metabolismo Energético , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-33/metabolismo , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Biomarcadores , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Inflamación/etiología , Activación de Macrófagos/genética , Mitocondrias/genética , Mitocondrias/inmunología , Mitocondrias/metabolismo , Fagocitos , Transducción de Señal
17.
Gastroenterology ; 161(4): 1270-1287.e19, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34224738

RESUMEN

BACKGROUND & AIMS: The molecular checkpoints driving T cell activation and cytokine responses in ulcerative colitis (UC) are incompletely understood. Here, we studied the Tec kinase ITK in UC. METHODS: We analyzed patients with inflammatory bowel disease (n = 223) and evaluated ITK activity as well as the functional effects of cyclosporine-A (CsA). In addition, 3 independent murine colitis models were used to investigate the functional role of ITK. Finally, the activity of ITK was blocked via pharmacological inhibitors and genetically engineered mice. Readout parameters were mini-endoscopy, histopathology, mucosal T cell apoptosis, and cytokine production. RESULTS: We found an expansion of pITK-expressing mucosal CD4+ T cells in UC rather than Crohn's disease that correlated with disease severity. CsA suppressed activation of ITK in cultured CD4+ T cells and calcineurin-containing microclusters adjacent to the T cell receptor signaling complex. Functionally, the capacity of CsA to suppress activity of experimental colitis was critically dependent on ITK. Genetic inactivation of Itk via gene targeting or induction of allele-sensitive Itk mutants prevented experimental colitis in 3 colitis models, and treatment with pharmacological ITK blockers suppressed established colitis. In addition, ITK controlled apoptosis and activation of mucosal Th2 and Th17 lymphocytes via NFATc2 signaling pathways. CONCLUSIONS: ITK activation was detected in UC and could be down-regulated in cultured T cells by CsA administration. Selective targeting of ITK emerges as an attractive approach for treatment of chronic intestinal inflammation and potentially UC by driving resolution of mucosal inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Colitis Ulcerosa/prevención & control , Colon/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Linfocitos Intraepiteliales/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Colitis Ulcerosa/enzimología , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/patología , Colon/enzimología , Colon/inmunología , Colon/patología , Ciclosporina/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Mucosa Intestinal/enzimología , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Linfocitos Intraepiteliales/enzimología , Linfocitos Intraepiteliales/inmunología , Linfocitos Intraepiteliales/patología , Ratones Noqueados , Terapia Molecular Dirigida , Fosforilación , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal
18.
J Allergy Clin Immunol ; 148(4): 1081-1087.e2, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34019913

RESUMEN

BACKGROUND: CD56-expressing natural killer (NK) cells as well as invariant NK T (iNKT) cells have been shown to either promote or inhibit allergic immune responses. OBJECTIVE: The aim of the present study was to investigate the impact of these cells in a recently developed humanized mouse model of allergen-induced IgE-dependent gut and lung inflammation. METHODS: Nonobese diabetic-severe combined immunodeficiency γ-chain knockout mice were injected intraperitoneally with human PBMCs or CD56-depleted (CD56neg) PBMCs from highly sensitized donors with birch or grass pollen allergy together with the respective allergen or with NaCl as a control. Three weeks later, the mice were challenged with the allergen rectally and gut inflammation was monitored by video miniendoscopy and by histology. Furthermore, airway inflammation was measured after an additional intranasal allergen challenge. RESULTS: Allergen-specific human IgE in mouse sera, detectable only after coinjection of the respective allergen, was reduced in mice being injected with CD56neg PBMCs compared with in mice receiving nondepleted PBMCs. Consequently, allergen-induced IgE-dependent colitis, airway hyperreactivity, and mucus-producing goblet cells were significantly inhibited in these mice. Interestingly, reconstitution of CD56neg PBMCs with nondepleted CD56+ cells and with CD56+CD3+ iNKT cells restored gut as well as lung inflammation, whereas addition of CD3-depleted CD56+ cells did not. CONCLUSION: These results demonstrate that allergen-specific gut and lung inflammation in PBMC-engrafted humanized mice is promoted by CD56+CD3+ iNKT cells, which opens new possibilities of therapeutic intervention in allergic diseases.


Asunto(s)
Colitis/inmunología , Células T Asesinas Naturales/inmunología , Hipersensibilidad Respiratoria/inmunología , Rinitis Alérgica Estacional/inmunología , Alérgenos/inmunología , Animales , Betula/inmunología , Complejo CD3/inmunología , Antígeno CD56/inmunología , Colitis/patología , Colitis/fisiopatología , Colon/inmunología , Colon/patología , Femenino , Humanos , Inmunoglobulina E/sangre , Pulmón/inmunología , Pulmón/patología , Pulmón/fisiopatología , Masculino , Ratones Transgénicos , Poaceae/inmunología , Polen/inmunología , Hipersensibilidad Respiratoria/patología , Hipersensibilidad Respiratoria/fisiopatología , Rinitis Alérgica Estacional/patología , Rinitis Alérgica Estacional/fisiopatología
19.
J Allergy Clin Immunol ; 148(2): 506-522.e8, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33617860

RESUMEN

BACKGROUND: Mas gene-related G protein-coupled receptors (MRGPRs) are a G protein-coupled receptor family responsive to various exogenous and endogenous agonists, playing a fundamental role in pain and itch sensation. The primate-specific family member MRGPRX2 and its murine orthologue MRGPRB2 are expressed by mast cells mediating IgE-independent signaling and pseudoallergic drug reactions. OBJECTIVES: Our aim was to increase knowledge about the function and regulation of MRGPRX2/MRGPRB2, which is of major importance in prevention of drug hypersensitivity reactions and drug-induced pruritus. METHODS: To identify novel MRGPR (ant)agonists, we screened a library of pharmacologically active compounds by utilizing a high-throughput calcium mobilization assay. The identified hit compounds were analyzed for their pseudoallergic and pruritogenic effects in mice and human. RESULTS: We found a class of commonly used drugs activating MRGPRX2 that, to a large extent, consists of antidepressants, antiallergic drugs, and antipsychotics. Three-dimensional pharmacophore modeling revealed structural similarities of the identified agonists, classifying them as cationic amphiphilic drugs. Mast cell activation was investigated by using the 3 representatively selected antidepressants clomipramine, paroxetine, and desipramine. Indeed, we were able to show a concentration-dependent activation and MRGPRX2-dependent degranulation of the human mast cell line LAD2 (Laboratory of Allergic Diseases-2). Furthermore, clomipramine, paroxetine, and desipramine were able to induce degranulation of human skin and murine peritoneal mast cells. These substances elicited dose-dependent scratching behavior following intradermal injection into C57BL/6 mice but less so in MRGPRB2-mutant mice, as well as wheal-and-flare reactions following intradermal injections in humans. CONCLUSION: Our results contribute to the characterization of structure-activity relationships and functionality of MRGPRX2 ligands and facilitate prediction of adverse reactions such as drug-induced pruritus to prevent severe drug hypersensitivity reactions.


Asunto(s)
Antidepresivos/efectos adversos , Conducta Animal/efectos de los fármacos , Degranulación de la Célula/efectos de los fármacos , Hipersensibilidad a las Drogas/inmunología , Mastocitos/inmunología , Proteínas del Tejido Nervioso/inmunología , Receptores Acoplados a Proteínas G/inmunología , Receptores de Neuropéptido/inmunología , Animales , Antidepresivos/farmacología , Línea Celular , Hipersensibilidad a las Drogas/patología , Humanos , Mastocitos/patología , Ratones , Proteínas del Tejido Nervioso/agonistas , Receptores Acoplados a Proteínas G/agonistas , Receptores de Neuropéptido/agonistas
20.
J Crohns Colitis ; 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32808031

RESUMEN

BACKGROUND & AIMS: The molecular mechanism of action of the Janus kinase (JAK) inhibitor tofacitinib is poorly understood. METHODS: Here, we analysed the inhibitory effect of tofacitinib on mucosal and blood T cells from patients with ulcerative colitis (UC). Furthermore tofacitinib treatment was analysed in experimental colitis models and wound healing. Additionally, tofacitinib effects were analysed in bioassays. RESULTS: Tofacitinib significantly reduced T cell derived inflammatory cytokine production (Th2, Th9, Th17) in patients with active UC. Additionally, impaired expression of the homing receptors alpha4/beta1 and alpha4/beta7 as well as reduced gut homing capacity of T cells in a humanized mouse model of colitis were observed. Tofacitinib suppressed acute and chronic oxazolone colitis compared to untreated wild-type mice associated with downregulation of cytokines produced by Th2, Th9 and Th17 cells. Functionally, tofacitinib induced apoptosis of intestinal epithelial cells and prevented mucosal wound healing in vivo at higher concentration. Thus, our findings suggest that tofacitinib is quite effective in protecting from colitis by inhibition of a bundle of T cell derived cytokines like IL-5, IL-6, IL-9, IL-13 and IL-17A. CONCLUSION: Application of tofacitinib emerges as an attractive concept for treatment of chronic intestinal inflammation at lower concentrations, whereas higher concentrations require attention due to prolonged wound healing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...