Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 44(4): 843-865, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38385286

RESUMEN

BACKGROUND: Accumulating evidence implicates the activation of G-protein-coupled PARs (protease-activated receptors) by coagulation proteases in the regulation of innate immune responses. METHODS: Using mouse models with genetic alterations of the PAR2 signaling platform, we have explored contributions of PAR2 signaling to infection with coxsackievirus B3, a single-stranded RNA virus provoking multiorgan tissue damage, including the heart. RESULTS: We show that PAR2 activation sustains correlates of severe morbidity-hemodynamic compromise, aggravated hypothermia, and hypoglycemia-despite intact control of the virus. Following acute viral liver injury, canonical PAR2 signaling impairs the restoration process associated with exaggerated type I IFN (interferon) signatures in response to viral RNA recognition. Metabolic profiling in combination with proteomics of liver tissue shows PAR2-dependent reprogramming of liver metabolism, increased lipid droplet storage, and gluconeogenesis. PAR2-sustained hypodynamic compromise, reprograming of liver metabolism, as well as imbalanced IFN responses are prevented in ß-arrestin coupling-deficient PAR2 C-terminal phosphorylation mutant mice. Thus, wiring between upstream proteases and immune-metabolic responses results from biased PAR2 signaling mediated by intracellular recruitment of ß-arrestin. Importantly, blockade of the TF (tissue factor)-FVIIa (coagulation factor VIIa) complex capable of PAR2 proteolysis with the NAPc2 (nematode anticoagulant protein c2) mitigated virus-triggered pathology, recapitulating effects seen in protease cleavage-resistant PAR2 mice. CONCLUSIONS: These data provide insights into a TF-FVIIa signaling axis through PAR2-ß-arrestin coupling that is a regulator of inflammation-triggered tissue repair and hemodynamic compromise in coxsackievirus B3 infection and can potentially be targeted with selective coagulation inhibitors.


Asunto(s)
Insuficiencia Multiorgánica , Tromboplastina , Animales , Ratones , Tromboplastina/metabolismo , beta-Arrestinas/metabolismo , Receptor PAR-2/genética , Factor VIIa/metabolismo , Endopeptidasas/metabolismo
2.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279255

RESUMEN

Endothelial protein C receptor (EPCR) is a receptor for the natural anti-coagulant activated protein C (aPC). It mediates the anti-inflammatory and barrier-protective functions of aPC through the cleavage of protease-activated receptor (PAR)1/2. Allergic contact dermatitis is a common skin disease characterized by inflammation and defective skin barrier. This study investigated the effect of EPCR and 3K3A-aPC on allergic contact dermatitis using a contact hypersensitivity (CHS) model. CHS was induced using 1-Fluoro-2,4-dinitrobenzene in EPCR-deficient (KO) and matched wild-type mice and mice treated with 3K3A-aPC, a mutant form of aPC with diminished anti-coagulant activity. Changes in clinical and histological features, cytokines, and immune cells were examined. EPCRKO mice displayed more severe CHS, with increased immune cell infiltration in the skin and higher levels of inflammatory cytokines and IgE than wild-type mice. EPCR, aPC, and PAR1/2 were expressed by the skin epidermis, with EPCR presenting almost exclusively in the basal layer. EPCRKO increased the epidermal expression of aPC and PAR1, whereas in CHS, their expression was reduced compared to wild-type mice. 3K3A-aPC reduced CHS severity in wild-type and EPCRKO mice by suppressing immune cell infiltration/activation and inflammatory cytokines. In summary, EPCRKO exacerbated CHS, whereas 3K3A-aPC could reduce the severity of CHS in both EPCRKO and wild-type mice.


Asunto(s)
Dermatitis Alérgica por Contacto , Proteína C , Proteínas Recombinantes , Animales , Ratones , Proteína C/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Receptor PAR-1/metabolismo , Transducción de Señal , Citocinas/farmacología , Dermatitis Alérgica por Contacto/tratamiento farmacológico
3.
Blood ; 143(10): 845-857, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38096370

RESUMEN

ABSTRACT: Protease activated receptors (PARs) are cleaved by coagulation proteases and thereby connect hemostasis with innate immune responses. Signaling of the tissue factor (TF) complex with factor VIIa (FVIIa) via PAR2 stimulates extracellular signal-regulated kinase (ERK) activation and cancer cell migration, but functions of cell autonomous TF-FVIIa signaling in immune cells are unknown. Here, we show that myeloid cell expression of FVII but not of FX is crucial for inflammatory cell recruitment to the alveolar space after challenge with the double-stranded viral RNA mimic polyinosinic:polycytidylic acid [Poly(I:C)]. In line with these data, genetically modified mice completely resistant to PAR2 cleavage but not FXa-resistant PAR2-mutant mice are protected from lung inflammation. Poly(I:C)-stimulated migration of monocytes/macrophages is dependent on ERK activation and mitochondrial antiviral signaling (MAVS) but independent of toll-like receptor 3 (TLR3). Monocyte/macrophage-synthesized FVIIa cleaving PAR2 is required for integrin αMß2-dependent migration on fibrinogen but not for integrin ß1-dependent migration on fibronectin. To further dissect the downstream signaling pathway, we generated PAR2S365/T368A-mutant mice deficient in ß-arrestin recruitment and ERK scaffolding. This mutation reduces cytosolic, but not nuclear ERK phosphorylation by Poly(I:C) stimulation, and prevents macrophage migration on fibrinogen but not fibronectin after stimulation with Poly(I:C) or CpG-B, a single-stranded DNA TLR9 agonist. In addition, PAR2S365/T368A-mutant mice display markedly reduced immune cell recruitment to the alveolar space after Poly(I:C) challenge. These results identify TF-FVIIa-PAR2-ß-arrestin-biased signaling as a driver for lung infiltration in response to viral nucleic acids and suggest potential therapeutic interventions specifically targeting TF-VIIa signaling in thrombo-inflammation.


Asunto(s)
Factor VIIa , Monocitos , Animales , Ratones , Factor VIIa/metabolismo , Monocitos/metabolismo , Tromboplastina/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Transducción de Señal/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibrinógeno/metabolismo , beta-Arrestinas/metabolismo
4.
Rheumatology (Oxford) ; 63(2): 571-580, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37228024

RESUMEN

OBJECTIVES: Endothelial protein C receptor (EPCR) is highly expressed in synovial tissues of patients with RA, but the function of this receptor remains unknown in RA. This study investigated the effect of EPCR on the onset and development of inflammatory arthritis and its underlying mechanisms. METHODS: CIA was induced in EPCR gene knockout (KO) and matched wild-type (WT) mice. The onset and development of arthritis was monitored clinically and histologically. T cells, dendritic cells (DCs), EPCR and cytokines from EPCR KO and WT mice, RA patients and healthy controls (HCs) were detected by flow cytometry and ELISA. RESULTS: EPCR KO mice displayed >40% lower arthritis incidence and 50% less disease severity than WT mice. EPCR KO mice also had significantly fewer Th1/Th17 cells in synovial tissues with more DCs in circulation. Lymph nodes and synovial CD4 T cells from EPCR KO mice expressed fewer chemokine receptors CXCR3, CXCR5 and CCR6 than WT mice. In vitro, EPCR KO spleen cells contained fewer Th1 and more Th2 and Th17 cells than WT and, in concordance, blocking EPCR in WT cells stimulated Th2 and Th17 cells. DCs generated from EPCR KO bone marrow were less mature and produced less MMP-9. Circulating T cells from RA patients expressed higher levels of EPCR than HC cells; blocking EPCR stimulated Th2 and Treg cells in vitro. CONCLUSION: Deficiency of EPCR ameliorates arthritis in CIA via inhibition of the activation and migration of pathogenic Th cells and DCs. Targeting EPCR may constitute a novel strategy for future RA treatment.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Animales , Humanos , Ratones , Artritis Experimental/metabolismo , Artritis Reumatoide/metabolismo , Células Dendríticas/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Membrana Sinovial/patología , Células Th17/metabolismo
5.
Wound Repair Regen ; 32(1): 90-103, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38155595

RESUMEN

Various preclinical and clinical studies have demonstrated the robust wound healing capacity of the natural anticoagulant activated protein C (APC). A bioengineered APC variant designated 3K3A-APC retains APC's cytoprotective cell signalling actions with <10% anticoagulant activity. This study was aimed to provide preclinical evidence that 3K3A-APC is efficacious and safe as a wound healing agent. 3K3A-APC, like wild-type APC, demonstrated positive effects on proliferation of human skin cells (keratinocytes, endothelial cells and fibroblasts). Similarly it also increased matrix metollaproteinase-2 activation in keratinocytes and fibroblasts. Topical 3K3A-APC treatment at 10 or 30 µg both accelerated mouse wound healing when culled on Day 11. And at 10 µg, it was superior to APC and had half the dermal wound gape compared to control. Further testing was conducted in excisional porcine wounds due to their congruence to human skin. Here, 3K3A-APC advanced macroscopic healing in a dose-dependent manner (100, 250 and 500 µg) when culled on Day 21. This was histologically corroborated by greater collagen maturity, suggesting more advanced remodelling. A non-interference arm of this study found no evidence that topical 3K3A-APC caused either any significant systemic side-effects or any significant leakage into the circulation. However the female pigs exhibited transient and mild local reactions after treatments in week three, which did not impact healing. Overall these preclinical studies support the hypothesis that 3K3A-APC merits future human wound studies.


Asunto(s)
Células Endoteliales , Proteína C , Femenino , Humanos , Animales , Ratones , Porcinos , Proteína C/farmacología , Proteína C/metabolismo , Proteína C/uso terapéutico , Células Endoteliales/metabolismo , Cicatrización de Heridas , Fibrinolíticos/uso terapéutico , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico
6.
J Thromb Haemost ; 21(3): 639-651, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36696221

RESUMEN

BACKGROUND: Tissue factor pathway inhibitor (TFPI) is the primary inhibitor of events initiating the blood coagulation pathway. Tfpi-/- mice die during embryonic development. The absence of protease-activated receptor (PAR) 4, the major thrombin receptor on mouse platelets, rescues Tfpi-/-mice to adulthood. Among the 3 TFPI isoforms in mice, TFPIα is the only isoform within platelets (pltTFPIα) and the only isoform that inhibits prothrombinase, the enzymatic complex that converts prothrombin to thrombin. OBJECTIVES: To determine biological functions of pltTFPIα. METHODS: Tfpi-/-/Par4-/- mice were irradiated and transplanted with bone marrow from mice lacking or containing pltTFPIα. Thus, PAR4 expression was restored in the recipient mice, which differed selectively by the presence or absence of pltTFPIα and lacked other forms of TFPI. RESULTS: Recipient mice lacking pltTFPIα had reduced survival over the 200-day posttransplant period. Necropsy revealed radiation injury associated with large intraventricular platelet-rich thrombi, whereas other organs were not affected. Thrombi were associated with fibrotic presentations, including increased collagen deposition, periostin-positive activated fibroblasts, myofibroblasts, and macrophage infiltrates. Recipient mice containing pltTFPIα showed evidence of radiation injury but lacked heart pathology. CONCLUSIONS: Tfpi-/-/Par4-/- mice develop severe cardiac fibrosis following irradiation and transplantation with bone marrow lacking pltTFPIα. This pathology is markedly reduced when the mice are transplanted with bone marrow containing pltTFPIα. Thus, in this model system pltTFPIα has an important physiological role in dampening pathological responses mediated by activated platelets within the heart tissue.


Asunto(s)
Plaquetas , Trombosis , Ratones , Animales , Plaquetas/metabolismo , Trombosis/metabolismo , Trombina/metabolismo , Isoformas de Proteínas , Fibrosis
7.
J Thromb Haemost ; 20(12): 2823-2836, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36161697

RESUMEN

BACKGROUND: Protease-activated receptor 2 (PAR2) signaling controls skin barrier function and inflammation, but the roles of immune cells and PAR2-activating proteases in cutaneous diseases are poorly understood. OBJECTIVE: To dissect PAR2 signaling contributions to skin inflammation with new genetic and pharmacological tools. METHODS/RESULTS: We found markedly increased numbers of PAR2+ infiltrating myeloid cells in skin lesions of allergic contact dermatitis (ACD) patients and in the skin of contact hypersensitivity (CHS) in mice, a murine ACD model for T cell-mediated allergic skin inflammation. Cell type-specific deletion of PAR2 in myeloid immune cells as well as mutation-induced complete PAR2 cleavage insensitivity significantly reduced skin inflammation and hapten-specific Tc1/Th1 cell response. Pharmacological approaches identified individual proteases involved in PAR2 cleavage and demonstrated a pivotal role of tissue factor (TF) and coagulation factor Xa (FXa) as upstream activators of PAR2 in both the induction and effector phase of CHS. PAR2 mutant mouse strains with differential cleavage sensitivity for FXa versus skin epithelial cell-expressed proteases furthermore uncovered a time-dependent regulation of CHS development with an important function of FXa-induced PAR2 activation during the late phase of skin inflammation. CONCLUSIONS: Myeloid cells and the TF-FXa-PAR2 axis are key mediators and potential therapeutic targets in inflammatory skin diseases.


Asunto(s)
Inflamación , Péptido Hidrolasas , Receptor PAR-2 , Animales , Ratones , Factor Xa , Receptor PAR-2/genética , Tromboplastina
9.
Front Cell Dev Biol ; 10: 852989, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35386206

RESUMEN

Tissue factor (TF) is crucial for embryogenesis, as mice lacking TF are embryonically lethal (E10.5). This lethality may be attributed to defects in vascular development and circulatory failure, suggesting additional roles for TF in embryonic development beyond coagulation. In this study, we characterized the role of one of the TF paralogs (f3a) using a zebrafish model. The expression of f3a during embryonic developmental stages was determined by RT-PCR. Spatiotemporal expression pattern of f3a revealed (high expression from 28 to 36 hpf) the role of in the development of the yolk sac, circulation, and fins. Morpholinos (MO), an antisense-based oligonucleotide strategy, was used to knockdown f3a and examined for defects in morphological appearance, bleeding, and vascular patterning. f3a MO-injected embryos showed morphological abnormalities, including shorter body lengths and crooked tails. O-dianisidine staining showed f3a MO-injected embryos exhibited bleeding in the trunk (5.44%) and head (9.52%) regions. Imaging of endothelial-specific transgenic lines (flk1:egfp-NLS/kdrl:mCherry-CAAX) showed a 3-fold decreased caudal vein plexus (CVP) in f3a morphants versus controls at 48 hpf, suggesting a potential role for f3a in angiogenesis. These findings confirm that f3a is essential for angiogenesis, in addition to its involvement in hemostasis.

10.
Haematologica ; 107(9): 2133-2143, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35142156

RESUMEN

Type 2B von Willebrand disease (VWD) is caused by gain-of-function mutations in von Willebrand factor (VWF). Increased VWF affinity for GPIba results in loss of high molecular weight multimers and enhanced platelet clearance, both contributing to the bleeding phenotype. Severity of the symptoms vary among type 2B VWD patients, with some developing thrombocytopenia only under stress conditions. Efforts have been made to study underlying pathophysiology for platelet abnormalities, but animal studies have been limited because of species specificity in the VWF-GPIba interaction. Here, we generated a severe form of type 2B VWD (p.V1316M) knockin mice in the context of human VWF exon 28 (encoding A1 and A2 domains) and crossed them with human GPIba transgenic strain. Heterozygous mutant mice recapitulated the phenotype of type 2B VWD in autosomal dominant manner and presented severe macrothrombocytopenia. Of note, platelets remaining in the circulation had extracytoplasmic GPIba shed-off from the cell surface. Reciprocal bone marrow transplantation determined mutant VWF produced from endothelial cells as the major cause of the platelet phenotype in type 2B VWD mice. Moreover, altered megakaryocyte maturation in the bone marrow and enhanced extramedullary megakaryopoiesis in the spleen were observed. Interestingly, injection of anti-VWF A1 blocking antibody (NMC-4) not only ameliorated platelet count and GPIba expression, but also reversed MK ploidy shift. In conclusion, we present a type 2B VWD mouse model with humanized VWF-GPIba interaction which demonstrated direct influence of aberrant VWF-GPIba binding on megakaryocytes.


Asunto(s)
Trombocitopenia , Enfermedad de von Willebrand Tipo 2 , Enfermedades de von Willebrand , Animales , Plaquetas/metabolismo , Células Endoteliales/metabolismo , Humanos , Ratones , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Trombocitopenia/metabolismo , Enfermedad de von Willebrand Tipo 2/genética , Enfermedades de von Willebrand/metabolismo , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
11.
Blood Adv ; 6(9): 2778-2790, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35015821

RESUMEN

Type 2N von Willebrand disease is caused by mutations in the factor VIII (FVIII) binding site of von Willebrand factor (VWF), resulting in dysfunctional VWF with defective binding capacity for FVIII. We developed a novel type 2N mouse model using CRISPR/Cas9 technology. In homozygous VWF2N/2N mice, plasma VWF levels were normal (1167 ± 257 mU/mL), but the VWF was completely incapable of binding FVIII, resulting in 53 ± 23 mU/mL of plasma FVIII levels that were similar to those in VWF-deficient (VWF-/-) mice. When wild-type human or mouse VWF was infused into VWF2N/2N mice, endogenous plasma FVIII was restored, peaking at 4 to 6 hours post-infusion, demonstrating that FVIII expressed in VWF2N mice is viable but short-lived unprotected in plasma due to dysfunctional 2N VWF. The whole blood clotting time and thrombin generation were impaired in VWF2N/2N but not in VWF-/- mice. Bleeding time and blood loss in VWF2N/2N mice were similar to wild-type mice in the lateral tail vein or ventral artery injury model. However, VWF2N/2N mice, but not VWF-/- mice, lost a significant amount of blood during the primary bleeding phase after a tail tip amputation injury model, indicating that alternative pathways can at least partially restore hemostasis when VWF is absent. In summary, we have developed a novel mouse model by gene editing with both the pathophysiology and clinical phenotype found in severe type 2N patients. This unique model can be used to investigate the biological properties of VWF/FVIII association in hemostasis and beyond.


Asunto(s)
Hemostáticos , Enfermedad de von Willebrand Tipo 2 , Enfermedades de von Willebrand , Animales , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Edición Génica , Hemorragia/genética , Humanos , Ratones , Enfermedades de von Willebrand/genética , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
12.
Blood Adv ; 5(15): 2969-2981, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34342643

RESUMEN

The tyrosine kinase JAK2 is a critical component of intracellular JAK/STAT cytokine signaling cascades that is prevalent in hematopoietic cells, such as hematopoietic stem cells and megakaryocytes (MKs). Individuals expressing the somatic JAK2 V617F mutation commonly develop myeloproliferative neoplasms (MPNs) associated with venous and arterial thrombosis, a leading cause of mortality. The role of JAK2 in hemostasis remains unclear. We investigated the role of JAK2 in platelet hemostatic function using Jak2fl/fl Pf4-Cre (Jak2Plt-/-) mice lacking JAK2 in platelets and MKs. Jak2Plt-/- mice developed MK hyperplasia and splenomegaly associated with severe thrombocytosis and bleeding. This notion was supported by failure to occlude in a ferric chloride carotid artery injury model and by a cremaster muscle laser-induced injury assay, in which Jak2Plt-/- platelets failed to form stable thrombi. Jak2Plt-/- platelets formed thrombi poorly after adhesion to type 1 collagen under arterial shear rates. Jak2Plt-/- platelets spread poorly on collagen under static conditions or on fibrinogen in response to the collagen receptor GPVI-specific agonist, collagen-related peptide (CRP). After activation with collagen, CRP, or the CLEC-2 agonist rhodocytin, Jak2Plt-/- platelets displayed decreased α-granule secretion and integrin αIIbß3 activation or aggregation, but showed normal responses to thrombin. Jak2Plt-/- platelets had impaired intracellular signaling when activated via GPVI, as assessed by tyrosine phosphorylation. Together, the results show that JAK2 deletion impairs platelet immunoreceptor tyrosine-based activation motif signaling and hemostatic function in mice and suggest that aberrant JAK2 signaling in patients with MPNs affects GPVI signaling, leading to hemostatic platelet function.


Asunto(s)
Plaquetas , Hemorragia , Hemostasis , Janus Quinasa 2 , Activación Plaquetaria , Animales , Susceptibilidad a Enfermedades , Janus Quinasa 2/genética , Ratones , Ratones Noqueados , Glicoproteínas de Membrana Plaquetaria , Trombocitosis
13.
J Thromb Haemost ; 19(10): 2417-2427, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34245090

RESUMEN

BACKGROUND: Rotational thromboelastometry (ROTEM) has been commonly used to assess the viscoelastic properties of the blood clotting process in the clinic for patients with a hemostatic or prothrombotic disorder. OBJECTIVE: To evaluate the capability of ROTEM in assessing hemostatic properties in whole blood from various mouse models with genetic bleeding or clotting disease and the effect of factor VIII (FVIII) therapeutics in FVIIInull mice. METHODS: Mice with a genetic deficiency in either a coagulation factor or a platelet glycoprotein were used in this study. The properties of platelet- or plasma-FVIII were also assessed. Citrated blood from mice was recalcified and used for ROTEM analysis. RESULTS: We found that blood collected from the vena cava could generate reliable results from ROTEM analysis, but not blood collected from the tail vein, retro-orbital plexus, or submandibular vein. Age and sex did not significantly affect the hemostatic properties determined by ROTEM analysis. Clotting time (CT) and clot formation time (CFT) were significantly prolonged in FVIIInull (5- and 9-fold, respectively) and FIXnull (4- and 5.7-fold, respectively) mice compared to wild-type (WT)-C57BL/6J mice. Platelet glycoprotein (GP)IIIanull mice had significantly prolonged CFT (8.4-fold) compared to WT-C57BL/6J mice. CT and CFT in factor V (FV) Leiden mice were significantly shortened with an increased α-angle compared to WT-C57BL/6J mice. Using ROTEM analysis, we showed that FVIII expressed in platelets or infused into whole blood restored hemostasis of FVIIInull mice in a dose-dependent manner. CONCLUSION: ROTEM is a reliable and sensitive assay for assessing therapeutics on hemostatic properties in mouse models with a bleeding or clotting disorder.


Asunto(s)
Hemostáticos , Tromboelastografía , Animales , Modelos Animales de Enfermedad , Factor VIII/genética , Hemostasis , Humanos , Ratones , Ratones Endogámicos C57BL
14.
Blood Adv ; 5(13): 2760-2774, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34242391

RESUMEN

Activation of blood coagulation and endothelial inflammation are hallmarks of respiratory infections with RNA viruses that contribute significantly to the morbidity and mortality of patients with severe disease. We investigated how signaling by coagulation proteases affects the quality and extent of the response to the TLR3-ligand poly(I:C) in human endothelial cells. Genome-wide RNA profiling documented additive and synergistic effects of thrombin and poly(I:C) on the expression level of many genes. The most significantly active genes exhibiting synergistic induction by costimulation with thrombin and poly(I:C) included the key mediators of 2 critical biological mechanisms known to promote endothelial thromboinflammatory functions: the initiation of blood coagulation by tissue factor and the control of leukocyte trafficking by the endothelial-leukocyte adhesion receptors E-selectin (gene symbol, SELE) and VCAM1, and the cytokines and chemokines CXCL8, IL-6, CXCL2, and CCL20. Mechanistic studies have indicated that synergistic costimulation with thrombin and poly(I:C) requires proteolytic activation of protease-activated receptor 1 (PAR1) by thrombin and transactivation of PAR2 by the PAR1-tethered ligand. Accordingly, a small-molecule PAR2 inhibitor suppressed poly(I:C)/thrombin-induced leukocyte-endothelial adhesion, cytokine production, and endothelial tissue factor expression. In summary, this study describes a positive feedback mechanism by which thrombin sustains and amplifies the prothrombotic and proinflammatory function of endothelial cells exposed to the viral RNA analogue, poly(I:C) via activation of PAR1/2.


Asunto(s)
Receptor PAR-1 , Trombina , Células Endoteliales , Retroalimentación , Humanos , ARN Viral
15.
PLoS One ; 16(5): e0252142, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34029348

RESUMEN

Accidental exposure to ionizing radiation may lead to delayed effects of acute radiation exposure (DEARE) in many organ systems. Activated protein C (APC) is a known mitigator of the acute radiation syndrome. To examine the role of APC in DEARE, we used a transgenic mouse model with 2- to 3-fold increased plasma levels of APC (high in APC, APCHi). Male and female APCHi mice and wild-type littermates were exposed to 9.5 Gy γ-rays with their hind-legs (bone marrow) shielded from radiation to allow long-term survival. At 3 and 6 months after irradiation, cardiac function was measured with ultrasonography. At 3 months, radiation increased cardiac dimensions in APCHi males, while decreases were seen in wild-type females. At this early time point, APCHi mice of both sexes were more susceptible to radiation-induced changes in systolic function compared to wild-types. At 6 months, a decrease in systolic function was mainly seen in male mice of both genotypes. At 6 months, specimens of heart, small intestine and dorsal skin were collected for tissue analysis. Female APCHi mice showed the most severe radiation-induced deposition of cardiac collagens but were protected against a radiation-induced loss of microvascular density. Both male and female APCHi mice were protected against a radiation induced upregulation of toll-like receptor 4 in the heart, but this did not translate into a clear protection against immune cell infiltration. In the small intestine, the APCHi genotype had no effect on an increase in the number of myeloperoxidase positive cells (seen mostly in females) or an increase in the expression of T-cell marker CD2 (males). Lastly, both male and female APCHi mice were protected against radiation-induced epidermal thickening and increase in 3-nitrotyrosine positive keratinocytes. In conclusion, prolonged high levels of APC in a transgenic mouse model had little effects on indicators of DEARE in the heart, small intestine and skin, with some differential effects in male compared to female mice.


Asunto(s)
Intestino Delgado/metabolismo , Proteína C/metabolismo , Piel/metabolismo , Animales , Femenino , Genotipo , Corazón/efectos de la radiación , Frecuencia Cardíaca/efectos de la radiación , Immunoblotting , Inmunohistoquímica , Intestino Delgado/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos C57BL , Piel/efectos de la radiación
16.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836597

RESUMEN

Thrombomodulin (TM) is a thrombin receptor on endothelial cells that is involved in promoting activation of the anticoagulant protein C pathway during blood coagulation. TM also exerts protective anti-inflammatory properties through a poorly understood mechanism. In this study, we investigated the importance of TM signaling to cellular functions by deleting it from endothelial cells by CRISPR-Cas9 technology and analyzed the resultant phenotype of TM-deficient (TM-/- ) cells. Deficiency of TM in endothelial cells resulted in increased basal permeability and hyperpermeability when stimulated by thrombin and TNF-α. The loss of the basal barrier permeability function was accompanied by increased tyrosine phosphorylation of VE-cadherin and reduced polymerization of F-actin filaments at cellular junctions. A significant increase in basal NF-κB signaling and expression of inflammatory cell adhesion molecules was observed in TM-/- cells that resulted in enhanced adhesion of leukocytes to TM-/- cells in flow chamber experiments. There was also a marked increase in expression, storage, and release of the von Willebrand factor (VWF) and decreased storage and release of angiopoietin-2 in TM-/- cells. In a flow chamber assay, isolated platelets adhered to TM-/- cells, forming characteristic VWF-platelet strings. Increased VWF levels and inflammatory foci were also observed in the lungs of tamoxifen-treated ERcre-TMf/f mice. Reexpression of the TM construct in TM-/- cells, but not treatment with soluble TM, normalized the cellular phenotype. Based on these results, we postulate cell-bound TM endows a quiescent cellular phenotype by tightly regulating expression of procoagulant, proinflammatory, and angiogenic molecules in vascular endothelial cells.


Asunto(s)
Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Trombomodulina/metabolismo , Angiopoyetina 2/metabolismo , Animales , Plaquetas/citología , Permeabilidad Capilar , Adhesión Celular , Células Endoteliales/citología , Endotelio Vascular/citología , Humanos , Inflamación , Leucocitos/citología , Pulmón/metabolismo , Ratones , Receptor PAR-1/metabolismo , Trombina/metabolismo , Trombomodulina/deficiencia , Trombomodulina/genética , Factor de von Willebrand/metabolismo
17.
Blood ; 137(2): 258-268, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-32735640

RESUMEN

Tissue factor pathway inhibitor (TFPI) inhibits proteases in the blood coagulation cascade that lead to the production of thrombin, including prothrombinase (factor Xa [FXa]/FVa), the catalytic complex that directly generates thrombin. Thus, TFPI and FV are directly linked in regulating the procoagulant response. Studies using knockout mice indicate that TFPI and FV are necessary for embryogenesis, but their contributions to vascular development are unclear. We performed extensive histological analyses of Tfpi-/- and Tfpi-/-F5-/- mouse embryos to investigate the importance of the interplay between TFPI and FV in regulating hemostasis and vascular development during embryogenesis. We observed normal tissue development throughout Tfpi-/- embryos, except in the central nervous system (CNS). The CNS displayed stunted brain growth, delayed development of the meninges, and severe vascular pathology characterized by the formation of glomeruloid bodies surrounding areas of cellular death, fibrin deposition, and hemorrhage. Removing FV from Tfpi-/- embryos completely ameliorated their brain pathology, suggesting that TFPI dampens FV-dependent procoagulant activity in a manner that modulates cerebrovascular development. Thus, we have identified a previously unrecognized role for TFPI activity within the CNS. This TFPI activity likely diminishes an effect of excess thrombin activity on signaling pathways that control cerebral vascular development.


Asunto(s)
Vasos Sanguíneos/embriología , Encéfalo/irrigación sanguínea , Encéfalo/embriología , Desarrollo Embrionario/fisiología , Lipoproteínas/metabolismo , Animales , Factor V/metabolismo , Ratones , Ratones Noqueados
18.
Blood Adv ; 4(22): 5810-5824, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33232477

RESUMEN

Deficiencies in many coagulation factors and protease-activated receptors (PARs) affect embryonic development. We describe a defect in definitive erythropoiesis in PAR2-deficient mice. Embryonic PAR2 deficiency increases embryonic death associated with variably severe anemia in comparison with PAR2-expressing embryos. PAR2-deficient fetal livers display reduced macrophage densities, erythroblastic island areas, and messenger RNA expression levels of markers for erythropoiesis and macrophages. Coagulation factor synthesis in the liver coincides with expanding fetal liver hematopoiesis during midgestation, and embryonic factor VII (FVII) deficiency impairs liver macrophage development. Cleavage-insensitive PAR2-mutant mice recapitulate the hematopoiesis defect of PAR2-deficient embryos, and macrophage-expressed PAR2 directly supports erythroblastic island function and the differentiation of red blood cells in the fetal liver. Conditional deletion of PAR2 in macrophages impairs erythropoiesis, as well as increases inflammatory stress, as evidenced by upregulation of interferon-regulated hepcidin antimicrobial peptide. In contrast, postnatal macrophage PAR2 deficiency does not have any effect on steady-state Kupffer cells, bone marrow macrophage numbers, or erythropoiesis, but erythropoiesis in macrophages from PAR2-deficient mice is impaired following hemolysis. These data identify a novel function for macrophage PAR2 signaling in adapting to rapid increases in blood demand during gestational development and postnatal erythropoiesis under stress conditions.


Asunto(s)
Eritropoyesis , Hígado , Receptor PAR-2 , Animales , Macrófagos , Ratones , Ratones Noqueados
19.
Res Pract Thromb Haemost ; 4(1): 64-71, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31989086

RESUMEN

BACKGROUND: Von Willebrand Disease (VWD) is the most common inherited bleeding disorder, caused by quantitative and qualitative changes in von Willebrand factor (VWF). The biology of VWD, studied in canine, porcine, and murine models, differ in species-specific biology of VWF and the amenability to experimental manipulations such as phlebotomy. The factor VIII (FVIII) levels in these models are higher than in humans with type 3 VWD, suggesting functional differences between FVIII and VWF.ObjectivesTo develop a VWF knock out (VWF-/-) rat by excision of all 52 exons of the VWF locus. METHODS: The entire VWF gene was eliminated in Sprague-Dawley (Crl:SD) rats via CRISPR/Cas9-mediated gene editing. VWF antigen (VWF:Ag), VWF propeptide, and VWF collagen IV binding (VWF:CB4) levels were determined by ELISA assays and FVIII chromogenic activity (FVIII:C) levels by chromogenic FVIII assays. Lateral tail veins were transected to measure bleeding time. VWF-/- rats were infused with FVIII-/- rat platelet poor plasma (PPP) to determine response of plasma FVIII. RESULTS: Breeding of VWF ± rats yielded VWF-/- offspring at normal Mendelian ratios. VWF:Ag, VWF propeptide, VWF:CB4, and FVIII:C plasma levels were undetectable in VWF-/- rats. VWF-/- rats bled longer and more than VWF+/- and VWF+/+ rats when challenged. Transfusion of FVIII-deficient platelet-poor plasma induced a rapid rise in endogenous FVIII:C in VWF-/- rats. CONCLUSION: This rat model of severe VWD due to elimination of the entire VWF gene recapitulates the severe secondary deficiency of FVIII seen in human type 3 VWD and facilitates the study of VWF and FVIII and their interactions.

20.
Blood Adv ; 4(1): 55-65, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31899798

RESUMEN

Previous studies have shown that platelet-specific factor VIII (FVIII) expression (2bF8) restores hemostasis and induces immune tolerance in hemophilia A (HA) mice even with preexisting inhibitors. Here we investigated for the first time whether platelet FVIII expression can prevent severe spontaneous bleeding in rat HA, a model mimicking the frequent spontaneous bleeding in patients with severe HA. A novel FVIII-/- rat model in a Dahl inbred background (Dahl-FVIII-/-) with nearly the entire rat FVIII gene inverted was created by using a CRISPR/Cas9 strategy. There was no detectable FVIII in plasma. Spontaneous bleeding in the soft tissue, muscles, or joints occurred in 100% of FVIII-/- rats. Sixty-one percent developed anti-FVIII inhibitors after ≥2 doses of recombinant human FVIII infusion. However, when 2bF8 transgene was crossed into the FVIII-/- background, none of the resulting 2bF8tg+FVIII-/- rats (with platelet FVIII levels of 28.26 ± 7.69 mU/108 platelets and undetectable plasma FVIII) ever had spontaneous bleeding. When 2bF8tg bone marrow (BM) was transplanted into FVIII-/- rats, only 1 of 7 recipients had a bruise at the early stage of BM reconstitution, but no other spontaneous bleeding was observed during the study period. To confirm that the bleeding diathesis in FVIII-/- rats was ameliorated after platelet FVIII expression, rotational thromboelastometry and whole-blood thrombin generation assay were performed. All parameters in 2bF8tg BM transplantation recipients were significantly improved compared with FVIII-/- control rats. Of note, neither detectable levels of plasma FVIII nor anti-FVIII inhibitors were detected in 2bF8tg BM transplantation recipients. Thus, platelet-specific FVIII expression can efficiently prevent severe spontaneous bleeding in FVIII-/- rats with no anti-FVIII antibody development.


Asunto(s)
Factor VIII , Hemofilia A , Animales , Plaquetas , Factor VIII/genética , Terapia Genética , Hemofilia A/tratamiento farmacológico , Hemofilia A/genética , Humanos , Fenotipo , Ratas , Ratas Endogámicas Dahl
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...