Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 33(43): 16874-88, 2013 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-24155294

RESUMEN

We have previously shown in mice that cytokine-mediated damage to the placenta can temporarily limit the flow of nutrients and oxygen to the fetus. The placental vulnerability is pronounced before embryonic day 11, when even mild immune challenge results in fetal loss. As gestation progresses, the placenta becomes increasingly resilient to maternal inflammation, but there is a narrow window in gestation when the placenta is still vulnerable to immune challenge yet resistant enough to allow for fetal survival. This gestational window correlates with early cortical neurogenesis in the fetal brain. Here, we show that maternal illness during this period selectively alters the abundance and laminar positioning of neuronal subtypes influenced by the Tbr1, Satb2, and Ctip2/Fezf2 patterning axis. The disturbances also lead to a laminar imbalance in the proportions of projection neurons and interneurons in the adult and are sufficient to cause changes in social behavior and cognition. These data illustrate how the timing of an illness-related placental vulnerability causes developmental alterations in neuroanatomical systems and behaviors that are relevant to autism spectrum disorders.


Asunto(s)
Corteza Cerebral/embriología , Neurogénesis , Enfermedades Placentarias/patología , Placenta/patología , Complicaciones Infecciosas del Embarazo/patología , Animales , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Cognición , Trastornos del Conocimiento/etiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Interneuronas/metabolismo , Interneuronas/patología , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Trastornos Mentales/etiología , Ratones , Ratones Endogámicos C57BL , Placenta/fisiopatología , Embarazo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Conducta Social , Proteínas de Dominio T Box , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
2.
J Cell Biol ; 191(4): 809-25, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21059851

RESUMEN

The ability of progenitor cells to exit the cell cycle is essential for proper embryonic development and homeostasis, but the mechanisms governing cell cycle exit are still not fully understood. Here, we tested the requirement for the retinoblastoma (Rb) protein and its family members p107 and p130 in G0/G1 arrest and differentiation in mammalian cells. We found that Rb family triple knockout (TKO) mouse embryos survive until days 9-11 of gestation. Strikingly, some TKO cells, including in epithelial and neural lineages, are able to exit the cell cycle in G0/G1 and differentiate in teratomas and in culture. This ability of TKO cells to arrest in G0/G1 is associated with the repression of key E2F target genes. Thus, G1 arrest is not always dependent on Rb family members, which illustrates the robustness of cell cycle regulatory networks during differentiation and allows for the identification of candidate pathways to inhibit the expansion of cancer cells with mutations in the Rb pathway.


Asunto(s)
Diferenciación Celular/fisiología , Fase G1/fisiología , Proteína de Retinoblastoma/metabolismo , Animales , Tipificación del Cuerpo/fisiología , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/fisiología , Proteína de Retinoblastoma/genética , Proteína p107 Similar a la del Retinoblastoma/genética , Proteína p107 Similar a la del Retinoblastoma/metabolismo , Proteína p130 Similar a la del Retinoblastoma/genética , Proteína p130 Similar a la del Retinoblastoma/metabolismo , Teratoma/metabolismo , Teratoma/patología , Factores de Transcripción/metabolismo
3.
J Neurosci ; 30(3): 894-904, 2010 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-20089898

RESUMEN

Although embryonic stem (ES) cells have been induced to differentiate into diverse neuronal cell types, the production of cortical projection neurons with the correct morphology and axonal connectivity has not been demonstrated. Here, we show that in vitro patterning is critical for generating neural precursor cells (ES-NPCs) competent to form cortical pyramidal neurons. During the first week of neural induction, these ES-NPCs begin to express genes that are specific for forebrain progenitors; an additional week of differentiation produces mature neurons with many features of cortical pyramidal neurons. After transplantation into the murine cerebral cortex, these specified ES-NPCs manifest the correct dendritic and axonal connectivity for their areal location. ES-NPCs transplanted into the deep layers of the motor cortex differentiate into layer 5 pyramidal neurons and extend axons to distant subcortical targets such as the pons and as far caudal as the pyramidal decussation and descending spinal tract and, importantly, do not extend axons to inappropriate targets such as the superior colliculus (SC). ES-NPCs transplanted into the visual cortex extend axons to the dorsal aspect of the SC and pons but avoid ventral SC and the pyramidal tract, whereas cells transplanted deep into the somatosensory cortex project axons to the ventral SC, avoiding the dorsal SC. Thus, these data establish that ES-derived cortical projection neurons can integrate into anatomically relevant circuits.


Asunto(s)
Axones/fisiología , Corteza Cerebral/fisiología , Células Madre Embrionarias/fisiología , Células Piramidales/citología , Células Piramidales/fisiología , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Embrión de Mamíferos , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/trasplante , Proteínas Fluorescentes Verdes/genética , Indoles , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Trasplante de Células Madre/métodos , Factores de Tiempo , Tretinoina/farmacología
4.
J Comp Neurol ; 504(6): 690-701, 2007 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-17722033

RESUMEN

We examined the potential of bone marrow transplantation (BMT) to rescue dopaminergic neurons in a mouse model of Parkinson's disease (PD). A BMT from mice transgenic for green fluorescent protein (GFP(+)) given either before or after administration of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) led to the accumulation of transplanted adult GFP(+) bone-marrow-derived cells (BMDC) in the substantia nigra, where dopaminergic neurodegeneration occurs in PD. Post-BMT, mice exposed to MPTP had substantially greater numbers of endogenous tyrosine hydroxylase-positive neuronal cell bodies in the substantia nigra and increased dopamine transporter-positive projections into the striatum compared to controls. Moreover, motor function was restored to normal within 1 month post-MPTP in BMT-treated mice assayed by a rotarod behavioral test. The effect of BMT on PD was indirect, as no evidence of BMDC fusion with or transdifferentiation into dopaminergic neurons was observed. BMDC activated by BMT or associated factors could play a trophic role in rescuing damaged cells. Alternatively, the beneficial effects of BMT are due to immunosuppression reflected by a reduction in the proportion of T-cells and a reduction of T-cell proliferation in BMT mice. These findings highlight that when immunosuppression is required for transplantation studies, the amelioration of symptoms may not be due to the transplant itself. Further, they suggest that the immune system plays a role in the development of characteristics typical of PD.


Asunto(s)
Trasplante de Médula Ósea/métodos , Tolerancia Inmunológica/fisiología , Intoxicación por MPTP , Actividad Motora/fisiología , Neuronas/fisiología , Análisis de Varianza , Animales , Recuento de Células , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Concanavalina A/farmacología , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/metabolismo , Intoxicación por MPTP/patología , Intoxicación por MPTP/fisiopatología , Intoxicación por MPTP/cirugía , Ratones , Mitógenos/farmacología , Sustancia Negra/metabolismo , Sustancia Negra/fisiopatología , Linfocitos T/fisiología , Factores de Tiempo , Tirosina 3-Monooxigenasa/metabolismo
5.
Am J Pathol ; 168(5): 1676-85, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16651633

RESUMEN

To better study early events in glioma genesis, markers that reliably denote landmarks in glioma development are needed. In the present study, we used microarray analysis to compare the gene expression patterns of magnetic resonance imaging (MRI)-localized N-ethyl-N-nitrosourea (ENU)-induced tumors in rat brains with those of uninvolved contralateral side and normal brains. Our analysis identified osteopontin (OPN) as the most up-regulated gene in glioma. Using immunohistochemistry we then confirmed OPN expression in every tumor examined (n = 17), including those with diameters as small as 300 mum. By contrast, no OPN immunostaining was seen in normal brain or in brains removed from ENU-exposed rats before the development of glioma. Further studies confirmed that OPN was co-localized exclusively in intratumoral glial fibrillary acidic protein-expressing cells and was notably absent from nestin-expressing ones. In conjunction with this, we confirmed that both normal neurosphere cells and ENU-im-mortalized subventricular zone/striatal cells produced negligible amounts of OPN compared to the established rat glioma cell line C6. Furthermore, inducing OPN expression in an immortalized cell line increased cell proliferation. Based on these findings, we conclude that OPN overexpression in ENU-induced gliomas occurs within a specific subset of intratumoral glial fibrillary acidic protein-positive cells and becomes evident at the stage of tumor progression.


Asunto(s)
Astrocitos/metabolismo , Biomarcadores de Tumor/análisis , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Preñez , Sialoglicoproteínas/metabolismo , Animales , Astrocitos/patología , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Etilnitrosourea , Femenino , Perfilación de la Expresión Génica , Glioma/inducido químicamente , Inmunohistoquímica , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nestina , Osteopontina , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Transfección
6.
Nat Cell Biol ; 5(11): 959-66, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14562057

RESUMEN

Heterokaryons are the product of cell fusion without subsequent nuclear or chromosome loss. Decades of research using Sendai-virus or polyethylene glycol (PEG)-mediated fusion in tissue culture showed that the terminally differentiated state of a cell could be altered. But whether stable non-dividing heterokaryons could occur in animals has remained unclear. Here, we show that green fluorescent protein (GFP)-positive bone-marrow-derived cells (BMDCs) contribute to adult mouse Purkinje neurons through cell fusion. The formation of heterokaryons increases in a linear manner over 1.5 years and seems to be stable. The dominant Purkinje neurons caused the BMDC nuclei within the resulting heterokaryons to enlarge, exhibit dispersed chromatin and activate a Purkinje neuron-specific transgene, L7-GFP. The observed reprogrammed heterokaryons that form in brain may provide insights into gene regulation associated with cell-fate plasticity.


Asunto(s)
Trasplante de Médula Ósea , Células de Purkinje/ultraestructura , Animales , Células de la Médula Ósea/metabolismo , Fusión Celular , Cromatina/metabolismo , Citometría de Flujo , Proteínas Fluorescentes Verdes , Hibridación Fluorescente in Situ , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transgenes
7.
Proc Natl Acad Sci U S A ; 100(4): 2088-93, 2003 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-12576546

RESUMEN

We show here that cells within human adult bone marrow can contribute to cells in the adult human brain. Cerebellar tissues from female patients with hematologic malignancies, who had received chemotherapy, radiation, and a bone marrow transplant, were analyzed. Brain samples were obtained at autopsy from female patients who received male (sex-mismatched) or female (sex-matched, control) bone marrow transplants. Cerebella were evaluated in 10-microm-thick, formaldehyde-fixed, paraffin-embedded sections that encompassed up to approximately 50% of a human Purkinje nucleus. A total of 5,860 Purkinje cells from sex-mismatched females and 3,202 Purkinje cells from sex-matched females were screened for Y chromosomes by epifluorescence. Confocal laser scanning microscopy allowed definitive identification of the sex chromosomes within the morphologically distinct Purkinje cells. In the brains of females who received male bone marrow, four Purkinje neurons were found that contained an X and a Y chromosome and two other Purkinje neurons contained more than a diploid number of sex chromosomes. No Y chromosomes were detected in the brains of sex-matched controls. The total frequency of male bone marrow contribution to female Purkinje cells approximated 0.1%. This study demonstrates that although during human development Purkinje neurons are no longer generated after birth, cells within the bone marrow can contribute to these CNS neurons even in adulthood. The underlying mechanism may be caused either by generation de novo of Purkinje neurons from bone marrow-derived cells or by fusion of marrow-derived cells with existing recipient Purkinje neurons.


Asunto(s)
Trasplante de Médula Ósea , Encéfalo/fisiología , Neuronas/fisiología , Células de Purkinje/fisiología , Adulto , Fusión Celular , Cromosomas Humanos Y , Femenino , Humanos , Hibridación in Situ
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA