Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Hematol ; 103(4): 1221-1233, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38413410

RESUMEN

In low-risk Myelodysplastic Neoplasms (MDS), increased activity of apoptosis-promoting factors such as tumor necrosis factor (TNFα) and pro-apoptotic Fas ligand (CD95L) have been described as possible pathomechanisms leading to impaired erythropoiesis. Asunercept (APG101) is a novel therapeutic fusion protein blocking CD95, which has previously shown partial efficacy in reducing transfusion requirement in a clinical phase I trial for low-risk MDS patients (NCT01736436; 2012-11-26). In the current study we aimed to evaluate the effect of Asunercept therapy on the clonal bone marrow composition to identify potential biomarkers to predict response. Bone marrow samples of n = 12 low-risk MDS patients from the above referenced clinical trial were analyzed by serial deep whole exome sequencing in a total of n = 58 time points. We could distinguish a mean of 3.5 molecularly defined subclones per patient (range 2-6). We observed a molecular response defined as reductions of dominant clone sizes by a variant allele frequency (VAF) decrease of at least 10% (mean 20%, range: 10.5-39.2%) in dependency of Asunercept treatment in 9 of 12 (75%) patients. Most of this decline in clonal populations was observed after completion of 12 weeks treatment. Particularly early and pronounced reductions of clone sizes were found in subclones driven by mutations in genes involved in regulation of methylation (n = 1 DNMT3A, n = 1 IDH2, n = 1 TET2). Our results suggest that APG101 could be efficacious in reducing clone sizes of mutated hematopoietic cells in the bone marrow of Myelodysplastic Neoplasms, which warrants further investigation.


Asunto(s)
Síndromes Mielodisplásicos , Neoplasias , Humanos , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Células Clonales/patología , Médula Ósea/patología , Apoptosis , Mutación
2.
Haematologica ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37916386

RESUMEN

Inhibitors of anti-apoptotic BCL-2 family proteins in combination with chemotherapy and hypomethylating agents (HMAs) are promising therapeutic approaches in acute myeloid leukemia (AML) and high-risk myelodysplastic syndromes (MDS). Alvocidib, a cyclin-dependent kinase 9 (CDK9) inhibitor and indirect transcriptional repressor of the anti-apoptotic factor MCL-1, has previously shown clinical activity in AML. Availability of biomarkers for response to the alvocidib + 5- AZA could also extend the rationale of this treatment concept to high-risk MDS. In this study, we performed a comprehensive in vitro assessment of alvocidib and 5-AZA effects in n=45 high-risk MDS patients. Our data revealed additive cytotoxic effects of the combination treatment. Mutational profiling of MDS samples identified ASXL1 mutations as predictors of response. Further, increased response rates were associated with higher gene-expression of the pro-apoptotic factor NOXA in ASXL1 mutated samples. The higher sensitivity of ASXL1 mutant cells to the combination treatment was confirmed in vivo in ASXL1Y588X transgenic mice. Overall, our study demonstrated augmented activity for the alvocidib + 5-AZA combination in higher-risk MDS and identified ASXL1 mutations as a biomarker of response for potential stratification studies.

3.
Stem Cell Res Ther ; 14(1): 156, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37287056

RESUMEN

BACKGROUND: Robust and reliable in vitro and in vivo models of primary cells are necessary to study the pathomechanisms of Myelodysplastic Neoplasms (MDS) and identify novel therapeutic strategies. MDS-derived hematopoietic stem and progenitor cells (HSPCs) are reliant on the support of bone marrow (BM) derived mesenchymal stroma cells (MSCs). Therefore, isolation and expansion of MCSs are essential for successfully modeling this disease. For the clinical use of healthy MSCs isolated from human BM, umbilical cord blood or adipose tissue, several studies showed that xeno-free (XF) culture conditions resulted in superior growth kinetics compared to MSCs cultured in the presence of fetal bovine serum (FBS). In this present study, we investigate, whether the replacement of a commercially available MSC expansion medium containing FBS with a XF medium is beneficial for the expansion of MSCs derived from BM of MDS patients which are often difficult to cultivate. METHODS: MSCs isolated from BM of MDS patients were cultured and expanded in MSC expansion medium with FBS or XF supplement. Subsequently, the impact of culture media on growth kinetics, morphology, immunophenotype, clonogenic potential, differentiation capacity, gene expression profiles and ability to engraft in immunodeficient mouse models was evaluated. RESULTS: Significant higher cell numbers with an increase in clonogenic potential were observed during culture of MDS MSCs with XF medium compared to medium containing FBS. Differential gene expression showed an increase in transcripts associated with MSC stemness after expansion with XF. Furthermore, immunophenotypes of the MSCs and their ability to differentiate into osteoblasts, adipocytes or chondroblasts remained stable. MSCs expanded with XF media were similarly supportive for creating MDS xenografts in vivo as MSCs expanded with FBS. CONCLUSION: Our data indicate that with XF media, higher cell numbers of MDS MSCs can be obtained with overall improved characteristics in in vitro and in vivo experimental models.


Asunto(s)
Médula Ósea , Células Madre Mesenquimatosas , Animales , Ratones , Humanos , Medio de Cultivo Libre de Suero , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo , Proliferación Celular , Células Cultivadas
4.
Nat Commun ; 14(1): 1497, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932114

RESUMEN

Limited response rates and frequent relapses during standard of care with hypomethylating agents in myelodysplastic neoplasms (MN) require urgent improvement of this treatment indication. Here, by combining 5-azacytidine (5-AZA) with the pan-lysyl oxidase inhibitor PXS-5505, we demonstrate superior restoration of erythroid differentiation in hematopoietic stem and progenitor cells (HSPCs) of MN patients in 20/31 cases (65%) versus 9/31 cases (29%) treated with 5-AZA alone. This effect requires direct contact of HSPCs with bone marrow stroma components and is dependent on integrin signaling. We further confirm these results in vivo using a bone marrow niche-dependent MN xenograft model in female NSG mice, in which we additionally demonstrate an enforced reduction of dominant clones as well as significant attenuation of disease expansion and normalization of spleen sizes. Overall, these results lay out a strong pre-clinical rationale for efficacy of combination treatment of 5-AZA with PXS-5505 especially for anemic MN.


Asunto(s)
Síndromes Mielodisplásicos , Trastornos Mieloproliferativos , Neoplasias , Humanos , Femenino , Ratones , Animales , Azacitidina/farmacología , Azacitidina/uso terapéutico , Eritropoyesis , Proteína-Lisina 6-Oxidasa , Células Madre Hematopoyéticas , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/patología , Trastornos Mieloproliferativos/patología , Neoplasias/patología
5.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36675239

RESUMEN

The erythroferrone gene (ERFE), also termed CTRP15, belongs to the C1q tumor necrosis factor-related protein (CTRP) family. Despite multiple reports about the involvement of CTRPs in cancer, the role of ERFE in cancer progression is largely unknown. We previously found that ERFE was upregulated in erythroid progenitors in myelodysplastic syndromes and strongly predicted overall survival. To understand the potential molecular interactions and identify cues for further functional investigation and the prognostic impact of ERFE in other malignancies, we performed a pan-cancer in silico analysis utilizing the Cancer Genome Atlas datasets. Our analysis shows that the ERFE mRNA is significantly overexpressed in 22 tumors and affects the prognosis in 11 cancer types. In certain tumors such as breast cancer and adrenocortical carcinoma, ERFE overexpression has been associated with the presence of oncogenic mutations and a higher tumor mutational burden. The expression of ERFE is co-regulated with the factors and pathways involved in cancer progression and metastasis, including activated pathways of the cell cycle, extracellular matrix/tumor microenvironment, G protein-coupled receptor, NOTCH, WNT, and PI3 kinase-AKT. Moreover, ERFE expression influences intratumoral immune cell infiltration. Conclusively, ERFE is aberrantly expressed in pan-cancer and can potentially function as a prognostic biomarker based on its putative functions during tumorigenesis and tumor development.


Asunto(s)
Síndromes Mielodisplásicos , Neoplasias , Hormonas Peptídicas , Humanos , Pronóstico , Hormonas Peptídicas/genética , Hepcidinas/metabolismo , Neoplasias/genética , Microambiente Tumoral
6.
Leukemia ; 36(1): 236-247, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34172896

RESUMEN

Preclinical research of myelodysplastic syndromes (MDSs) is hampered by a lack of feasible disease models. Previously, we have established a robust patient-derived xenograft (PDX) model for MDS. Here we demonstrate for the first time that this model is applicable as a preclinical platform to address pending clinical questions by interrogating the efficacy and safety of the thrombopoietin receptor agonist eltrombopag. Our preclinical study included n = 49 xenografts generated from n = 9 MDS patient samples. Substance efficacy was evidenced by FACS-based human platelet quantification and clonal bone marrow evolution was reconstructed by serial whole-exome sequencing of the PDX samples. In contrast to clinical trials in humans, this experimental setup allowed vehicle- and replicate-controlled analyses on a patient-individual level deciphering substance-specific effects from natural disease progression. We found that eltrombopag effectively stimulated thrombopoiesis in MDS PDX without adversely affecting the patients' clonal composition. In conclusion, our MDS PDX model is a useful tool for testing new therapeutic concepts in MDS preceding clinical trials.


Asunto(s)
Benzoatos/uso terapéutico , Hidrazinas/uso terapéutico , Síndromes Mielodisplásicos/tratamiento farmacológico , Pirazoles/uso terapéutico , Anciano , Anciano de 80 o más Años , Animales , Apoptosis , Proliferación Celular , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Síndromes Mielodisplásicos/patología , Pronóstico , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Exp Hematol ; 107: 38-50, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34952140

RESUMEN

Patient-derived xenograft (PDX) models have emerged as versatile preclinical platforms for investigation of functional pathomechanisms in myelodysplastic syndromes (MDS) and other myeloid neoplasms. However, despite increasingly improved methodology, engraftment efficiencies frequently remain low. Humanized three-dimensional scaffold models (ossicle xenotransplantation models) in immunocompromised mice have recently been found to enable improved engraftment rates of healthy and malignant human hematopoiesis. We therefore interrogated the feasibility of using four different three-dimensional ossicle-based PDX models for application with primary MDS samples. In a fully standardized comparison, we evaluated scaffold materials such as Gelfoam, extracellular matrix (ECM), and human or xenogenous bone substance in comparison to intrafemoral (IF) co-injection of bone marrow (BM)-derived mesenchymal stromal cells (MSCs) and CD34+ hematopoietic stem and progenitor cells (HSPCs). Our study included13 primary MDS patient samples transplanted in parallel according to these five different conditions. Engraftment of MDS samples was assessed by flow cytometry, immunohistological staining, and molecular validation. We determined that three-dimensional ossicle-based methods achieved higher relative rates of engraftment and enabled long-term retrievability of patient-derived MSCs from implanted ossicles. In summary, HSPCs and MSCs derived from MDS BM, which did not significantly engraft in NSG mice after intrafemoral injection, were able to colonize humanized scaffold models. Therefore, these models are promising new xenotransplantation techniques for addressing preclinical and functional questions of the interaction between hematopoiesis and the BM niche in MDS.


Asunto(s)
Células Madre Mesenquimatosas , Síndromes Mielodisplásicos , Animales , Células de la Médula Ósea/patología , Modelos Animales de Enfermedad , Hematopoyesis , Células Madre Hematopoyéticas/patología , Humanos , Células Madre Mesenquimatosas/patología , Ratones , Síndromes Mielodisplásicos/patología , Trasplante Heterólogo
8.
Nat Commun ; 12(1): 6170, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34697318

RESUMEN

The bone marrow (BM) stroma in myeloid neoplasms is altered and it is hypothesized that this cell compartment may also harbor clonal somatically acquired mutations. By exome sequencing of in vitro expanded mesenchymal stromal cells (MSCs) from n = 98 patients with myelodysplastic syndrome (MDS) and n = 28 healthy controls we show that these cells accumulate recurrent mutations in genes such as ZFX (n = 8/98), RANK (n = 5/98), and others. MDS derived MSCs display higher mutational burdens, increased replicative stress, senescence, inflammatory gene expression, and distinct mutational signatures as compared to healthy MSCs. However, validation experiments in serial culture passages, chronological BM aspirations and backtracking of high confidence mutations by re-sequencing primary sorted MDS MSCs indicate that the discovered mutations are secondary to in vitro expansion but not present in primary BM. Thus, we here report that there is no evidence for clonal mutations in the BM stroma of MDS patients.


Asunto(s)
Médula Ósea/patología , Células Madre Mesenquimatosas/patología , Síndromes Mielodisplásicos/genética , Adulto , Anciano , Anciano de 80 o más Años , Médula Ósea/metabolismo , Células Cultivadas , Exoma/genética , Femenino , Genotipo , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Persona de Mediana Edad , Mutación , Síndromes Mielodisplásicos/patología , Fenotipo , Microambiente Tumoral
9.
Br J Haematol ; 192(5): 879-891, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33486765

RESUMEN

Ineffective erythropoiesis and iron overload are common in myelodysplastic syndromes (MDS). Erythroferrone (ERFE) and growth/differentiation factor 15 (GDF15) are two regulators of iron homeostasis produced by erythroid progenitors. Elevated systemic levels of ERFE and GDF15 in MDS are associated with dysregulated iron metabolism and iron overload, which is especially pronounced in MDS with SF3B1 gene mutations. However, the role of ERFE and GDF15 in MDS pathogenesis and their influence on disease progression are largely unknown. Here, we analyzed the expression of ERFE and GDF15 in CD71+ erythroid progenitors of n = 111 MDS patients and assessed their effects on patient survival. The expression of ERFE and GDF15 in MDS was highly aberrant. Unexpectedly, ERFE expression in erythroprogenitors was highly relevant for MDS prognosis and independent of International Prognostic Scoring System (IPSS) stratification. Although ERFE expression was increased in patients with SF3B1 mutations, it predicted overall survival (OS) in both the SF3B1wt and SF3B1mut subgroups. Of note, ERFE overexpression predicted superior OS in the IPSS low/Int-1 subgroup and in patients with normal karyotype. Similar observations were made for GDF15, albeit not reaching statistical significance. In summary, our results revealed a strong association between ERFE expression and MDS outcome, suggesting a possible involvement of ERFE in molecular MDS pathogenesis.


Asunto(s)
Antígenos CD/análisis , Células Precursoras Eritroides/metabolismo , Síndromes Mielodisplásicos/metabolismo , Hormonas Peptídicas/biosíntesis , Receptores de Transferrina/análisis , Adulto , Anciano , Anciano de 80 o más Años , Células Precursoras Eritroides/química , Femenino , Factor 15 de Diferenciación de Crecimiento/biosíntesis , Factor 15 de Diferenciación de Crecimiento/genética , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/mortalidad , Síndromes Mielodisplásicos/terapia , Hormonas Peptídicas/genética , Fosfoproteínas/genética , Modelos de Riesgos Proporcionales , Factores de Empalme de ARN/genética , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...