Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 11: 1328806, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38155837

RESUMEN

Genomic imprinting is an epigenetic process whereby genes are monoallelically expressed in a parent-of-origin-specific manner. Imprinted genes are frequently found clustered in the genome, likely illustrating their need for both shared regulatory control and functional inter-dependence. The Dlk1-Dio3 domain is one of the largest imprinted clusters. Genes in this region are involved in development, behavior, and postnatal metabolism: failure to correctly regulate the domain leads to Kagami-Ogata or Temple syndromes in humans. The region contains many of the hallmarks of other imprinted domains, such as long non-coding RNAs and parental origin-specific CTCF binding. Recent studies have shown that the Dlk1-Dio3 domain is exquisitely regulated via a bipartite imprinting control region (ICR) which functions differently on the two parental chromosomes to establish monoallelic expression. Furthermore, the Dlk1 gene displays a selective absence of imprinting in the neurogenic niche, illustrating the need for precise dosage modulation of this domain in different tissues. Here, we discuss the following: how differential epigenetic marks laid down in the gametes cause a cascade of events that leads to imprinting in the region, how this mechanism is selectively switched off in the neurogenic niche, and why studying this imprinted region has added a layer of sophistication to how we think about the hierarchical epigenetic control of genome function.

2.
Nat Commun ; 13(1): 4391, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906226

RESUMEN

Mammalian parental imprinting represents an exquisite form of epigenetic control regulating the parent-specific monoallelic expression of genes in clusters. While imprinting perturbations are widely associated with developmental abnormalities, the intricate regional interplay between imprinted genes makes interpreting the contribution of gene dosage effects to phenotypes a challenging task. Using mouse models with distinct deletions in an intergenic region controlling imprinting across the Dlk1-Dio3 domain, we link changes in genetic and epigenetic states to allelic-expression and phenotypic outcome in vivo. This determined how hierarchical interactions between regulatory elements orchestrate robust parent-specific expression, with implications for non-imprinted gene regulation. Strikingly, flipping imprinting on the parental chromosomes by crossing genotypes of complete and partial intergenic element deletions rescues the lethality of each deletion on its own. Our work indicates that parental origin of an epigenetic state is irrelevant as long as appropriate balanced gene expression is established and maintained at imprinted loci.


Asunto(s)
Cromosomas , Impresión Genómica , Alelos , Animales , Metilación de ADN/genética , ADN Intergénico , Dosificación de Gen , Impresión Genómica/genética , Mamíferos/genética , Ratones
3.
Elife ; 112022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35311642

RESUMEN

We recently identified a missense mutation in Nucleoporin107 (Nup107; D447N) underlying XX-ovarian-dysgenesis, a rare disorder characterized by underdeveloped and dysfunctional ovaries. Modeling of the human mutation in Drosophila or specific knockdown of Nup107 in the gonadal soma resulted in ovarian-dysgenesis-like phenotypes. Transcriptomic analysis identified the somatic sex-determination gene doublesex (dsx) as a target of Nup107. Establishing Dsx as a primary relevant target of Nup107, either loss or gain of Dsx in the gonadal soma is sufficient to mimic or rescue the phenotypes induced by Nup107 loss. Importantly, the aberrant phenotypes induced by compromising either Nup107 or dsx are reminiscent of bone morphogenetic protein (BMP signaling hyperactivation). Remarkably, in this context, the metalloprotease AdamTS-A, a transcriptional target of both Dsx and Nup107, is necessary for the calibration of BMP signaling. As modulation of BMP signaling is a conserved critical determinant of soma-germline interaction, the sex- and tissue-specific deployment of Dsx-F by Nup107 seems crucial for the maintenance of the homeostatic balance between the germ cells and somatic gonadal cells.


Asunto(s)
Acuaporinas , Proteínas de Drosophila , Animales , Proteínas de Unión al ADN/metabolismo , Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Diferenciación Sexual/genética
4.
Pediatr Endocrinol Rev ; 17(4): 302-307, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32780953

RESUMEN

Frasier syndrome (FS), a rare disease caused by inherited or de novo mutation in Wilm's Tumor suppressor gene 1 (WT1), is characterized by slow progressive nephropathy, XY gonadal dysgenesis (XY-DSD), and increased risk for gonadal tumors. Early childhood (1-6 years) nephropathy progresses with age to refractory nephrotic syndrome, and end-stage renal failure in late adolescence, when delayed puberty and/or primary amenorrhea are clinically evident. We report a unique case of FS presenting initially with primary amenorrhea at 16 years, without previous or concomitant renal damage. Only subsequently she developed an extremely late-onset nephropathy. Genetic analysis revealed the IVS9 + 5 G>A mutation in intron 9 of the WT1 gene. This clinical presentation and review of WT1 literature highlights the importance of considering FS in the differential diagnosis of patients with 46,XY disorders of Sexual development, even without nephropathy. Furthermore, the identification WT1 gene mutation prior to evident renal dysfunction indicates an immediate and close surveillance of renal function enabling an optimal and timely medical response.


Asunto(s)
Disgenesia Gonadal 46 XY , Proteínas WT1/genética , Niño , Preescolar , Femenino , Síndrome de Frasier , Disgenesia Gonadal 46 XY/genética , Gonadoblastoma , Humanos , Lactante , Mutación , Neoplasias Ováricas
5.
J Clin Endocrinol Metab ; 105(11)2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32818257

RESUMEN

CONTEXT: NKX2-2 is a crucial transcription factor that enables specific ß-cell gene expression. Nkx2-2(-/-) mice manifest with severe neonatal diabetes and changes in ß-cell progenitor fate into ghrelin-producing cells. In humans, recessive NKX2-2 gene mutations have been recently reported as a novel etiology for neonatal diabetes, with only 3 cases known worldwide. This study describes the genetic analysis, distinctive clinical features, the therapeutic challenges, and the unique pathophysiology causing neonatal diabetes in human NKX2-2 dysfunction. CASE DESCRIPTION: An infant with very low birth weight (VLBW) and severe neonatal diabetes (NDM) presented with severe obesity and developmental delay already at age 1 year. The challenge of achieving glycemic control in a VLBW infant was unexpectedly met by a regimen of 3 daily doses of long-acting insulin analogues. Sanger sequencing of known NDM genes (such as ABCC8 and EIF2AK3) was followed by whole-exome sequencing that revealed homozygosity of a pathogenic frameshift variant, c.356delG, p.P119fs64*, in the islet cells transcription factor, NKX2-2. To elucidate the cause for the severe obesity, an oral glucose tolerance test was conducted at age 3.5 years and revealed undetectable C-peptide levels with a paradoxically unexpected 30% increase in ghrelin levels. CONCLUSION: Recessive NKX2-2 loss of function causes severe NDM associated with VLBW, childhood obesity, and developmental delay. The severe obesity phenotype is associated with postprandial paradoxical ghrelin secretion, which may be related to human ß-cell fate change to ghrelin-secreting cells, recapitulating the finding in Nkx2-2(-/-) mice islet cells.


Asunto(s)
Diabetes Mellitus/genética , Ghrelina/metabolismo , Proteínas de Homeodominio/genética , Mutación , Obesidad Infantil/genética , Proteínas de Pez Cebra/genética , Preescolar , Diabetes Mellitus/metabolismo , Femenino , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/metabolismo , Humanos , Lactante , Recién Nacido de muy Bajo Peso , Proteínas Nucleares , Obesidad Infantil/metabolismo , Factores de Transcripción , Secuenciación del Exoma , Proteínas de Pez Cebra/metabolismo
6.
Am J Med Genet A ; 182(5): 1268-1272, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32134183

RESUMEN

Processing of Precursor RNA 1 (POP1) is a core protein component shared by two essential closely related eukaryotic ribonucleoprotein complexes: RNase MRP (the mitochondrial RNA processing ribonuclease) and RNase P. Recently, five patients harboring mutations in POP1 have been reported with severe spondylo-epi-metaphyseal dysplasia and extremely short stature. We report a unique clinical phenotype resulting from the novel homozygous R211Q POP1 mutation in three patients from one family, presenting with severe short stature but only subtle skeletal dysplastic changes that are merely metaphyseal. The RNA moiety of the RNase-MRP complex quantified in RNA extracted from peripheral lymphocytes was dramatically reduced in affected patients indicating instability of the enzymatic complex. However, pre5.8s rRNA, a substrate of RNase-MRP complex, was not accumulated in patients' RNA unlike in the previously reported POP1 mutations; this may explain the uniquely mild phenotype in our cases, and questions the assumption that alteration in ribosomal biogenesis is the pathophysiological basis for skeletal disorders caused by POP1 mutations. Finally, POP1 mutations should be considered in familial cases with severe short stature even when skeletal dysplasia is not strongly evident.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Enanismo/genética , Predisposición Genética a la Enfermedad , Osteocondrodisplasias/genética , Ribonucleoproteínas/genética , Niño , Consanguinidad , Enanismo/diagnóstico por imagen , Enanismo/patología , Homocigoto , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Anomalías Musculoesqueléticas , Mutación/genética , Osteocondrodisplasias/diagnóstico por imagen , Osteocondrodisplasias/patología , Precursores del ARN/genética , Ribosomas/genética
7.
N Engl J Med ; 379(11): 1042-1049, 2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30207912

RESUMEN

The causes of ovarian dysgenesis remain incompletely understood. Two sisters with XX ovarian dysgenesis carried compound heterozygous truncating mutations in the BRCA2 gene that led to reduced BRCA2 protein levels and an impaired response to DNA damage, which resulted in chromosomal breakage and the failure of RAD51 to be recruited to double-stranded DNA breaks. The sisters also had microcephaly, and one sister was in long-term remission from leukemia, which had been diagnosed when she was 5 years old. Drosophila mutants that were null for an orthologue of BRCA2 were sterile, and gonadal dysgenesis was present in both sexes. These results revealed a new role for BRCA2 and highlight the importance to ovarian development of genes that are critical for recombination during meiosis. (Funded by the Israel Science Foundation and others.).


Asunto(s)
Proteína BRCA2/deficiencia , Rotura Cromosómica , Reparación del ADN , Genes BRCA2 , Disgenesia Gonadal/genética , Ovario/crecimiento & desarrollo , Adolescente , Animales , Proteína BRCA2/fisiología , Rotura Cromosómica/efectos de los fármacos , Análisis Mutacional de ADN , Drosophila melanogaster , Femenino , Humanos , Hipogonadismo/genética , Masculino , Microcefalia/genética , Mitomicina/farmacología , Modelos Animales , Ovario/fisiología , Linaje , Hermanos , Adulto Joven
8.
J Med Genet ; 55(9): 599-606, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29764912

RESUMEN

OBJECTIVE: To identify the genetic basis of a childhood-onset syndrome of variable severity characterised by progressive spinocerebellar ataxia, mental retardation, psychotic episodes and cerebellar atrophy. METHODS: Identification of the underlying mutations by whole exome and whole genome sequencing. Consequences were examined in patients' cells and in yeast. RESULTS: Two brothers from a consanguineous Palestinian family presented with progressive spinocerebellar ataxia, mental retardation and psychotic episodes. Serial brain imaging showed severe progressive cerebellar atrophy. Whole exome sequencing revealed a novel mutation: pitrilysin metallopeptidase 1 (PITRM1) c.2795C>T, p.T931M, homozygous in the affected children and resulting in 95% reduction in PITRM1 protein. Whole genome sequencing revealed a chromosome X structural rearrangement that also segregated with the disease. Independently, two siblings from a second Palestinian family presented with similar, somewhat milder symptoms and the same PITRM1 mutation on a shared haplotype. PITRM1T931M carrier frequency was 0.027 (3/110) in the village of the first family evaluated, and 0/300 among Palestinians from other locales. PITRM1 is a mitochondrial matrix enzyme that degrades 10-65 amino acid oligopeptides, including the mitochondrial fraction of amyloid-beta peptide. Analysis of peptide cleavage activity by the PITRM1T931M protein revealed a significant decrease in the degradation capacity specifically of peptides ≥40 amino acids. CONCLUSION: PITRM1T931M results in childhood-onset recessive cerebellar pathology. Severity of PITRM1-related disease may be affected by the degree of impairment in cleavage of mitochondrial long peptides. Disruption and deletion of X linked regulatory segments may also contribute to severity.


Asunto(s)
Enfermedades Cerebelosas/genética , Cerebelo/patología , Mutación con Pérdida de Función , Metaloendopeptidasas/genética , Adolescente , Edad de Inicio , Árabes/genética , Atrofia , Enfermedades Cerebelosas/enzimología , Cerebelo/enzimología , Niño , Humanos , Masculino , Mitocondrias/enzimología , Proteínas Mitocondriales/genética , Linaje , Secuenciación del Exoma , Secuenciación Completa del Genoma , Adulto Joven
9.
Neurology ; 88(11): 1021-1028, 2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28188302

RESUMEN

OBJECTIVE: To identify the genetic basis of a recessive congenital neurologic syndrome characterized by severe hypotonia, arthrogryposis, and respiratory failure. METHODS: Identification of the responsible gene by exome sequencing and assessment of the effect of the mutation on protein stability in transfected rat neuronal-like PC12A123.7 cells. RESULTS: Two brothers from a nonconsanguineous Yemeni Jewish family manifested at birth with severe hypotonia and arthrogryposis. The older brother died of respiratory failure at 5 days of age. The proband, now 4.5 years old, has been mechanically ventilated since birth with virtually no milestones achievement. Whole exome sequencing revealed homozygosity of SLC18A3 c.1078G>C, p.Gly360Arg in the affected brothers but not in other family members. SLC18A3 p.Gly360Arg is not reported in world populations but is present at a carrier frequency of 1:30 in healthy Yemeni Jews. SLC18A3 encodes the vesicular acetylcholine transporter (VAChT), which loads newly synthesized acetylcholine from the neuronal cytoplasm into synaptic vesicles. Mice that are VAChT-null have been shown to die at birth of respiratory failure. In human VAChT, residue 360 is located in a conserved region and substitution of arginine for glycine is predicted to disrupt proper protein folding and membrane embedding. Stable transfection of wild-type and mutant human VAChT into neuronal-like PC12A123.7 cells revealed similar mRNA levels, but undetectable levels of the mutant protein, suggesting post-translational degradation of mutant VAChT. CONCLUSION: Loss of function of VAChT underlies severe arthrogryposis and respiratory failure. While most congenital myasthenic syndromes are caused by defects in postsynaptic proteins, VAChT deficiency is a presynaptic myasthenic syndrome.


Asunto(s)
Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Adulto , Animales , Arginina/genética , Salud de la Familia , Glicina/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Mutación/genética , Síndromes Miasténicos Congénitos/complicaciones , Células PC12 , Procesamiento Proteico-Postraduccional/genética , ARN Mensajero , Ratas , Transfección , Proteínas de Transporte Vesicular de Acetilcolina/genética
10.
J Clin Invest ; 125(11): 4295-304, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26485283

RESUMEN

Ovarian development and maintenance are poorly understood; however, diseases that affect these processes can offer insights into the underlying mechanisms. XX female gonadal dysgenesis (XX-GD) is a rare, genetically heterogeneous disorder that is characterized by underdeveloped, dysfunctional ovaries, with subsequent lack of spontaneous pubertal development, primary amenorrhea, uterine hypoplasia, and hypergonadotropic hypogonadism. Here, we report an extended consanguineous family of Palestinian origin, in which 4 females exhibited XX-GD. Using homozygosity mapping and whole-exome sequencing, we identified a recessive missense mutation in nucleoporin-107 (NUP107, c.1339G>A, p.D447N). This mutation segregated with the XX-GD phenotype and was not present in available databases or in 150 healthy ethnically matched controls. NUP107 is a component of the nuclear pore complex, and the NUP107-associated protein SEH1 is required for oogenesis in Drosophila. In Drosophila, Nup107 knockdown in somatic gonadal cells resulted in female sterility, whereas males were fully fertile. Transgenic rescue of Drosophila females bearing the Nup107D364N mutation, which corresponds to the human NUP107 (p.D447N), resulted in almost complete sterility, with a marked reduction in progeny, morphologically aberrant eggshells, and disintegrating egg chambers, indicating defective oogenesis. These results indicate a pivotal role for NUP107 in ovarian development and suggest that nucleoporin defects may play a role in milder and more common conditions such as premature ovarian failure.


Asunto(s)
Acuaporinas/fisiología , Proteínas de Drosophila/fisiología , Disgenesia Gonadal 46 XX/genética , Mutación Missense , Proteínas de Complejo Poro Nuclear/genética , Ovario/patología , Adolescente , Adulto , Animales , Animales Modificados Genéticamente , Acuaporinas/deficiencia , Acuaporinas/genética , Consanguinidad , Modelos Animales de Enfermedad , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Humanos , Infertilidad Femenina/genética , Masculino , Ratones , Modelos Moleculares , Morfogénesis , Complejos Multiproteicos , Proteínas de Complejo Poro Nuclear/deficiencia , Proteínas de Complejo Poro Nuclear/fisiología , Oogénesis/genética , Óvulo/patología , Linaje , Conformación Proteica
11.
J Clin Invest ; 125(10): 3757-65, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26426075

RESUMEN

BACKGROUND: Noninvasive prenatal testing can be used to accurately detect chromosomal aneuploidies in circulating fetal DNA; however, the necessity of parental haplotype construction is a primary drawback to noninvasive prenatal diagnosis (NIPD) of monogenic disease. Family-specific haplotype assembly is essential for accurate diagnosis of minuscule amounts of circulating cell-free fetal DNA; however, current haplotyping techniques are too time-consuming and laborious to be carried out within the limited time constraints of prenatal testing, hampering practical application of NIPD in the clinic. Here, we have addressed this pitfall and devised a universal strategy for rapid NIPD of a prevalent mutation in the Ashkenazi Jewish (AJ) population. METHODS: Pregnant AJ couples, carrying mutation(s) in GBA, which encodes acid ß-glucosidase, were recruited at the SZMC Gaucher Clinic. Targeted next-generation sequencing of GBA-flanking SNPs was performed on peripheral blood samples from each couple, relevant mutation carrier family members, and unrelated individuals who are homozygotes for an AJ founder mutation. Allele-specific haplotypes were constructed based on linkage, and a consensus Gaucher disease-associated founder mutation-flanking haplotype was fine mapped. Together, these haplotypes were used for NIPD. All test results were validated by conventional prenatal or postnatal diagnostic methods. RESULTS: Ten parental alleles in eight unrelated fetuses were diagnosed successfully based on the noninvasive method developed in this study. The consensus mutation-flanking haplotype aided diagnosis for 6 of 9 founder mutation alleles. CONCLUSIONS: The founder NIPD method developed and described here is rapid, economical, and readily adaptable for prenatal testing of prevalent autosomal recessive disease-causing mutations in an assortment of worldwide populations. FUNDING: SZMC, Protalix Biotherapeutics Inc., and Centogene AG.


Asunto(s)
Análisis Mutacional de ADN , ADN/sangre , Enfermedades Fetales/diagnóstico , Efecto Fundador , Enfermedad de Gaucher/diagnóstico , Genes Recesivos , Glucosilceramidasa/genética , Diagnóstico Prenatal/métodos , Alelos , Secuencia de Consenso , ADN/genética , Diagnóstico Precoz , Femenino , Enfermedades Fetales/genética , Transfusión Fetomaterna , Enfermedad de Gaucher/embriología , Enfermedad de Gaucher/genética , Haplotipos , Humanos , Judíos/genética , Linaje , Polimorfismo de Nucleótido Simple , Embarazo , Sensibilidad y Especificidad , Análisis de Secuencia de ADN , Factores de Tiempo
12.
J Med Genet ; 52(9): 636-41, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26070314

RESUMEN

BACKGROUND: Familial glucocorticoid deficiency (FGD) reflects specific failure of adrenocortical glucocorticoid production in response to adrenocorticotropic hormone (ACTH). Most cases are caused by mutations encoding ACTH-receptor components (MC2R, MRAP) or the general steroidogenesis protein (StAR). Recently, nicotinamide nucleotide transhydrogenase (NNT) mutations were found to cause FGD through a postulated mechanism resulting from decreased detoxification of reactive oxygen species (ROS) in adrenocortical cells. METHODS AND RESULTS: In a consanguineous Palestinian family with combined mineralocorticoid and glucocorticoid deficiency, whole-exome sequencing revealed a novel homozygous NNT_c.598 G>A, p.G200S, mutation. Another affected, unrelated Palestinian child was also homozygous for NNT_p.G200S. Haplotype analysis showed this mutation is ancestral; carrier frequency in ethnically matched controls is 1/200. Assessment of patient fibroblasts for ROS production, ATP content and mitochondrial morphology showed that biallelic NNT mutations result in increased levels of ROS, lower ATP content and morphological mitochondrial defects. CONCLUSIONS: This report of a novel NNT mutation, p.G200S, expands the phenotype of NNT mutations to include mineralocorticoid deficiency. We provide the first patient-based evidence that NNT mutations can cause oxidative stress and both phenotypic and functional mitochondrial defects. These results directly demonstrate the importance of NNT to mitochondrial function in the setting of adrenocortical insufficiency.


Asunto(s)
Glucocorticoides/deficiencia , Mineralocorticoides/deficiencia , Mutación , NADP Transhidrogenasas/genética , Receptores de Mineralocorticoides/metabolismo , Árabes , Consanguinidad , Homocigoto , Humanos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Estrés Oxidativo/genética , Análisis de Secuencia de ADN
13.
J Med Genet ; 52(6): 391-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25873734

RESUMEN

BACKGROUND: Primary gonadal failure is characterised by primary amenorrhoea or early menopause in females, and oligospermia or azoospermia in males. Variants of the minichromosome maintenance complex component 8 gene (MCM8) have recently been shown to be significantly associated with women's menopausal age in genome-wide association studies. Furthermore, MCM8-knockout mice are sterile. The objective of this study was to elucidate the genetic aetiology of gonadal failure in two consanguineous families presenting as primary amenorrhoea in the females and as small testes and azoospermia in a male. METHODS AND RESULTS: Using whole exome sequencing, we identified two novel homozygous mutations in the MCM8 gene: a splice (c.1954-1G>A) and a frameshift (c.1469-1470insTA). In each consanguineous family the mutation segregated with the disease and both mutations were absent in 100 ethnically matched controls. The splice mutation led to lack of the wild-type transcript and three different aberrant transcripts predicted to result in either truncated or significantly shorter proteins. Quantitative analysis of the aberrantly spliced transcripts showed a significant decrease in total MCM8 message in affected homozygotes for the mutation, and an intermediate decrease in heterozygous family members. Chromosomal breakage following exposure to mitomcyin C was significantly increased in cells from homozygous individuals for c.1954-1G>A, as well as c.1469-1470insTA. CONCLUSIONS: MCM8, a component of the pre-replication complex, is crucial for gonadal development and maintenance in humans-both males and females. These findings provide new insights into the genetic disorders of infertility and premature menopause in women.


Asunto(s)
Trastornos Gonadales/genética , Componente 8 del Complejo de Mantenimiento de Minicromosoma/genética , Mutación , Adolescente , Alelos , Inestabilidad Cromosómica , Rotura Cromosómica , Mapeo Cromosómico , Consanguinidad , Variaciones en el Número de Copia de ADN , ADN Complementario/genética , Exoma , Femenino , Expresión Génica , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo , Trastornos Gonadales/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Recién Nacido , Masculino , Ovario/metabolismo , Linaje , Polimorfismo de Nucleótido Simple , Sitios de Empalme de ARN , ARN Mensajero/genética , Hermanos
14.
J Clin Invest ; 124(5): 2071-5, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24905461

RESUMEN

The transcription factor steroidogenic factor 1 (SF-1; also known as NR5A1) is a crucial mediator of both steroidogenic and nonsteroidogenic tissue differentiation. Mutations within SF1 underlie different disorders of sexual development (DSD), including sex reversal, spermatogenic failure, ovarian insufficiency, and adrenocortical deficiency. Here, we identified a recessive mutation within SF1 that resulted in a substitution of arginine to glutamine at codon 103 (R103Q) in a child with both severe 46,XY-DSD and asplenia. The R103Q mutation decreased SF-1 transactivation of TLX1, a transcription factor that has been shown to be essential for murine spleen development. Additionally, the SF1 R103Q mutation impaired activation of steroidogenic genes, without affecting synergistic SF-1 and sex-determining region Y (SRY) coactivation of the testis development gene SOX9. Together, our data provide evidence that SF-1 is required for spleen development in humans via transactivation of TLX1 and that mutations that only impair steroidogenesis, without altering the SF1/SRY transactivation of SOX9, can lead to 46,XY-DSD.


Asunto(s)
Proteínas de Homeodominio/biosíntesis , Proteínas Proto-Oncogénicas/biosíntesis , Bazo/crecimiento & desarrollo , Factor Esteroidogénico 1/metabolismo , Activación Transcripcional/fisiología , Sustitución de Aminoácidos , Animales , Células CHO , Células COS , Chlorocebus aethiops , Codón/genética , Codón/metabolismo , Cricetinae , Cricetulus , Células HEK293 , Síndrome de Heterotaxia/genética , Síndrome de Heterotaxia/metabolismo , Síndrome de Heterotaxia/patología , Proteínas de Homeodominio/genética , Humanos , Masculino , Ratones , Mutación Missense , Proteínas Proto-Oncogénicas/genética , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Proteína de la Región Y Determinante del Sexo/genética , Proteína de la Región Y Determinante del Sexo/metabolismo , Bazo/metabolismo , Factor Esteroidogénico 1/genética
15.
N Engl J Med ; 370(10): 921-31, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24552285

RESUMEN

BACKGROUND: Polyarteritis nodosa is a systemic necrotizing vasculitis with a pathogenesis that is poorly understood. We identified six families with multiple cases of systemic and cutaneous polyarteritis nodosa, consistent with autosomal recessive inheritance. In most cases, onset of the disease occurred during childhood. METHODS: We carried out exome sequencing in persons from multiply affected families of Georgian Jewish or German ancestry. We performed targeted sequencing in additional family members and in unrelated affected persons, 3 of Georgian Jewish ancestry and 14 of Turkish ancestry. Mutations were assessed by testing their effect on enzymatic activity in serum specimens from patients, analysis of protein structure, expression in mammalian cells, and biophysical analysis of purified protein. RESULTS: In all the families, vasculitis was caused by recessive mutations in CECR1, the gene encoding adenosine deaminase 2 (ADA2). All the Georgian Jewish patients were homozygous for a mutation encoding a Gly47Arg substitution, the German patients were compound heterozygous for Arg169Gln and Pro251Leu mutations, and one Turkish patient was compound heterozygous for Gly47Val and Trp264Ser mutations. In the endogamous Georgian Jewish population, the Gly47Arg carrier frequency was 0.102, which is consistent with the high prevalence of disease. The other mutations either were found in only one family member or patient or were extremely rare. ADA2 activity was significantly reduced in serum specimens from patients. Expression in human embryonic kidney 293T cells revealed low amounts of mutant secreted protein. CONCLUSIONS: Recessive loss-of-function mutations of ADA2, a growth factor that is the major extracellular adenosine deaminase, can cause polyarteritis nodosa vasculopathy with highly varied clinical expression. (Funded by the Shaare Zedek Medical Center and others.).


Asunto(s)
Adenosina Desaminasa/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Mutación , Poliarteritis Nudosa/genética , Adenosina Desaminasa/química , Adenosina Desaminasa/metabolismo , Adolescente , Edad de Inicio , Niño , Preescolar , Exoma , Femenino , Genes Recesivos , Georgia (República) , Humanos , Lactante , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Judíos/genética , Masculino , Persona de Mediana Edad , Linaje , Poliarteritis Nudosa/patología , Turquía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...