Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(2): 514-522, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36633548

RESUMEN

A 5-fold twin is usually observed in nanostructured metals after mechanical tests and/or annealing treatment. However, the formation mechanism of a 5-fold twin has not been fully elaborated, due to the lack of direct time-resolved atomic-scale observation. Here, by using in situ nanomechanical testing combined with atomistic simulations, we show that sequential twinning slip in varying slip systems and decomposition of high-energy grain boundaries account for the 5-fold twin formation in a nanoscale gold single crystal under bending as well as the reversible formation and dissolution of a 5-fold twin in a nanocrystal with a preexisting twin under tension and shearing. Moreover, we find that the complex stress state in the neck area results in the breakdown of Schmid's law, causing 5-fold twin formation in a gold nanocrystal with a twin boundary parallel to the loading direction. These findings enrich our understanding of the formation process of high-order twin structures in nanostructured metals.

2.
Proc Natl Acad Sci U S A ; 116(26): 12666-12671, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31160443

RESUMEN

Nanomaterials have tremendous potential to increase electrochromic smart window efficiency, speed, and durability. However, nanoparticles vary in size, shape, and surface defects, and it is unknown how nanoparticle heterogeneity contributes to particle-dependent electrochromic properties. Here, we use single-nanoparticle-level electro-optical imaging to measure structure-function relationships in electrochromic tungsten oxide nanorods. Single nanorods exhibit a particle-dependent waiting time for tinting (from 100 ms to 10 s) due to Li-ion insertion at optically inactive surface sites. Longer nanorods tint darker than shorter nanorods and exhibit a Li-ion gradient that increases from the nanorod ends to the middle. The particle-dependent ion-insertion kinetics contribute to variable tinting rates and magnitudes across large-area smart windows. Next, we quantified how particle-particle interactions impact tinting dynamics and reversibility as the nanorod building blocks are assembled into a thin film. Interestingly, single particles tint 4 times faster and cycle 20 times more reversibly than thin films made of the same particles. These findings allow us to propose a nanostructured electrode architecture that optimizes optical modulation rates and reversibility across large-area smart windows.

3.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 5): 870-879, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32830767

RESUMEN

The crystal structure and composition of the zeta phase in the group VB transition metal carbides are not completely understood despite decades of experimental studies. As such, the phase rarely appears on phase diagrams of the group VB transition metal carbides. There is currently renewed interest in this phase, as tantalum carbide composites exhibit high fracture toughness in the presence of this phase. This work extends the initial computational study using density functional theory of the phase stability of the zeta phase in the tantalum carbide system, where the tantalum carbide zeta-phase crystal structure and stability were determined, to the niobium and vanadium carbides. It is shown that the zeta phases in the three systems share the same crystal structure and it is an equilibrium phase at low temperatures. The carbon atom ordering in the three different phases is explored and it is demonstrated that the zeta phase in the tantalum carbides prefers to order carbon atoms differently than in the niobium and vanadium carbide zeta phases. Finally, the properties of this crystal are computed, including elastic constants, electronic densities of states and phonon dispersion curves, to illustrate that this crystal structure is similar to other transition metal carbides.

4.
Nat Commun ; 8(1): 1083, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29057914

RESUMEN

Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. However, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. Here, we report a unique shape memory behavior in CaFe2As2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress-strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonal phase transformation. Our results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr2Si2-structured intermetallic compounds.

5.
Sci Rep ; 6: 34571, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27708354

RESUMEN

HfN specimens deformed via four-point bend tests at room temperature and at 2300 °C (~0.7 Tm) showed increased plasticity response with temperature. Dynamic diffraction via transmission electron microscopy (TEM) revealed ⟨110⟩{111} as the primary slip system in both temperature regimes and ⟨110⟩{110} to be a secondary slip system activated at elevated temperature. Dislocation line lengths changed from a primarily linear to a curved morphology with increasing temperature suggestive of increased dislocation mobility being responsible for the brittle to ductile temperature transition. First principle generalized stacking fault energy calculations revealed an intrinsic stacking fault (ISF) along ⟨112⟩{111}, which is the partial dislocation direction for slip on these close packed planes. Though B1 structures, such as NaCl and HfC predominately slip on ⟨110⟩{110}, the ISF here is believed to facilitate slip on the {111} planes for this B1 HfN phase.

6.
Nanoscale ; 7(38): 15657-64, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26350050

RESUMEN

In this study, we report the size-dependent transition of deformation twinning studied using in situ SEM/TEM tensile testing of defect-free [110] Au nanowires/ribbons with controlled geometry. The critical dimension below which the ordinary plasticity transits to deformation twinning is experimentally determined to be ∼170 nm for Au nanowires with equilateral cross-sections. Nanoribbons with a fixed thickness but increased width-to-thickness ratios (9 : 1) were also studied to show that an increase in the surface energy due to the crystal re-orientation suppresses the deformation twinning. Molecular dynamics simulations confirmed that the transition from partial dislocation mediated plasticity to perfect dislocation plasticity with increase in the width-to-thickness ratio is due to the effect of the surface energy.

7.
Phys Rev Lett ; 114(16): 165502, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25955056

RESUMEN

Differences in plasticity are usually attributed to significant changes in crystalline symmetry or the strength of the interatomic bonds. In the B1 monocarbides, differences in slip planes exist at low temperatures despite having the same structure and very similar bonding characteristics. Our experimental results demonstrate concretely that HfC slips on {110} planes while TaC slips on {111} planes. Density functional theory calculations rationalize this difference through the formation of an intrinsic stacking fault on the {111} planes, formation of Shockley partials, and enhanced metallic bonding because of the valence filling of electrons between these transitional metal carbides.

8.
Nat Mater ; 14(6): 594-600, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25751073

RESUMEN

Twinning is a fundamental deformation mode that competes against dislocation slip in crystalline solids. In metallic nanostructures, plastic deformation requires higher stresses than those needed in their bulk counterparts, resulting in the 'smaller is stronger' phenomenon. Such high stresses are thought to favour twinning over dislocation slip. Deformation twinning has been well documented in face-centred cubic (FCC) nanoscale crystals. However, it remains unexplored in body-centred cubic (BCC) nanoscale crystals. Here, by using in situ high-resolution transmission electron microscopy and atomistic simulations, we show that twinning is the dominant deformation mechanism in nanoscale crystals of BCC tungsten. Such deformation twinning is pseudoelastic, manifested through reversible detwinning during unloading. We find that the competition between twinning and dislocation slip can be mediated by loading orientation, which is attributed to the competing nucleation mechanism of defects in nanoscale BCC crystals. Our work provides direct observations of deformation twinning as well as new insights into the deformation mechanism in BCC nanostructures.

9.
Nano Lett ; 14(12): 7131-7, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25394305

RESUMEN

The stability of thin liquid films on nanostructured surfaces is important but poorly understood. Here, we develop a general model of the meniscus shape and disjoining pressure for thin liquid films on nanostructured surfaces based on the minimization of the free energy and the Derjaguin approximation. This model is then compared with molecular dynamics simulations for a water-gold system with triangular and square nanostructures of varying depth and film thickness, demonstrating the robustness of the analytical model.

10.
Small ; 10(1): 100-8, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23873787

RESUMEN

Room-temperature uniaxial compressions of 900-nm-diameter aluminum bi-crystals, each containing a high-angle grain boundary with a plane normal inclined at 24° to the loading direction, revealed frictional sliding along the boundary plane to be the dominant deformation mechanism. The top crystallite sheared off as a single unit in the course of compression instead of crystallographic slip and extensive dislocation activity, as would be expected. Compressive stress strain data of deforming nano bicrystals was continuous, in contrast to single crystalline nano structures that show a stochastic stress strain signature, and displayed a peak in stress at the elastic limit of ~ 176 MPa followed by gradual softening and a plateau centered around ~ 125 MPa. An energetics-based physical model, which may explain observed room-temperature grain boundary sliding, in presented, and observations are discussed within the framework of crystalline nano-plasticity and defect microstructure evolution.

11.
Phys Rev Lett ; 105(9): 099601; author reply 099602, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20868200
12.
Nat Commun ; 1: 144, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21266994

RESUMEN

Although deformation processes in submicron-sized metallic crystals are well documented, the direct observation of deformation mechanisms in crystals with dimensions below the sub-10-nm range is currently lacking. Here, through in situ high-resolution transmission electron microscopy (HRTEM) observations, we show that (1) in sharp contrast to what happens in bulk materials, in which plasticity is mediated by dislocation emission from Frank-Read sources and multiplication, partial dislocations emitted from free surfaces dominate the deformation of gold (Au) nanocrystals; (2) the crystallographic orientation (Schmid factor) is not the only factor in determining the deformation mechanism of nanometre-sized Au; and (3) the Au nanocrystal exhibits a phase transformation from a face-centered cubic to a body-centered tetragonal structure after failure. These findings provide direct experimental evidence for the vast amount of theoretical modelling on the deformation mechanisms of nanomaterials that have appeared in recent years.

13.
Nano Lett ; 10(1): 139-42, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20030357

RESUMEN

We show that the plastic deformation of nanowires under torsion can be either homogeneous or heterogeneous, regardless of size, depending on the wire orientation. Homogeneous deformation occurs when 110-oriented face-centered-cubic metal wires are twisted, leading to the nucleation of coaxial dislocations, analogous to the Eshelby twist mechanism. Heterogeneous deformation is predicted for 111 and 100 wires under torsion, localized at the twist boundaries. These simulations also reveal the detailed mechanisms of twist boundary formation from dislocation reactions.


Asunto(s)
Nanopartículas del Metal/química , Nanotecnología/métodos , Nanocables/química , Simulación por Computador , Cristalización , Ensayo de Materiales , Nanoestructuras , Estrés Mecánico , Propiedades de Superficie , Resistencia a la Tracción
14.
Proc Natl Acad Sci U S A ; 105(38): 14304-7, 2008 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-18787126

RESUMEN

Understanding the plasticity and strength of crystalline materials in terms of the dynamics of microscopic defects has been a goal of materials research in the last 70 years. The size-dependent yield stress observed in recent experiments of submicrometer metallic pillars provides a unique opportunity to test our theoretical models, allowing the predictions from defect dynamics simulations to be directly compared with mechanical strength measurements. Although depletion of dislocations from submicrometer face-centered-cubic (FCC) pillars provides a plausible explanation of the observed size-effect, we predict multiplication of dislocations in body-centered-cubic (BCC) pillars through a series of molecular dynamics and dislocation dynamics simulations. Under the combined effects from the image stress and dislocation core structure, a dislocation nucleated from the surface of a BCC pillar generates one or more dislocations moving in the opposite direction before it exits from the surface. The process is repeatable so that a single nucleation event is able to produce a much larger amount of plastic deformation than that in FCC pillars. This self-multiplication mechanism suggests a need for a different explanation of the size dependence of yield stress in FCC and BCC pillars.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...