Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 515
Filtrar
1.
Neurosurg Focus Video ; 11(1): V8, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957428

RESUMEN

Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous disorder. Tubers of the central nervous system are a hallmark of the disorder and often cause epilepsy. Many TSC patients fail to achieve seizure control with medication alone. Several case series have demonstrated high seizure freedom rates after resective surgery. However, the technique for the resection of epileptogenic tubers has largely been unreported. Here the authors present 2 cases to illustrate their multistage approach for localizing and resecting the seizure onset zone in patients with TSC. At their institution, they have excellent seizure outcomes and a low complication rate with this technique. The video can be found here: https://stream.cadmore.media/r10.3171/2024.4.FOCVID2411.

2.
Nat Med ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961225

RESUMEN

APOE4 is the strongest genetic risk factor for Alzheimer's disease (AD), with increased odds ratios in female carriers. Targeting amyloid plaques shows modest improvement in male non-APOE4 carriers. Leveraging single-cell transcriptomics across APOE variants in both sexes, multiplex flow cytometry and validation in two independent cohorts of APOE4 female carriers with AD, we identify a new subset of neutrophils interacting with microglia associated with cognitive impairment. This phenotype is defined by increased interleukin (IL)-17 and IL-1 coexpressed gene modules in blood neutrophils and in microglia of cognitively impaired female APOE ε4 carriers, showing increased infiltration to the AD brain. APOE4 female IL-17+ neutrophils upregulated the immunosuppressive cytokines IL-10 and TGFß and immune checkpoints, including LAG3 and PD-1, associated with accelerated immune aging. Deletion of APOE4 in neutrophils reduced this immunosuppressive phenotype and restored the microglial response to neurodegeneration, limiting plaque pathology in AD mice. Mechanistically, IL-17F upregulated in APOE4 neutrophils interacts with microglial IL-17RA to suppress the induction of the neurodegenerative phenotype, and blocking this axis supported cognitive improvement in AD mice. These findings provide a translational basis to target IL-17F in APOE ε4 female carriers with cognitive impairment.

3.
Brain Commun ; 6(4): fcae147, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045090

RESUMEN

The associations between human concussions and subsequent sequelae of chronic neuropsychiatric and cardiovascular diseases such as hypertension have been reported; however, little is known about the underlying biological processes. We hypothesized that dietary changes, including a high-salt diet, disrupt the bidirectional gut-brain axis, resulting in worsening neuroinflammation and emergence of cardiovascular and behavioural phenotypes in the chronic period after repetitive closed head injury in adolescent mice. Adolescent mice were subjected to three daily closed head injuries, recovered for 12 weeks and then maintained on a high-salt diet or a normal diet for an additional 12 weeks. Experimental endpoints were haemodynamics, behaviour, microglial gene expression (bulk RNA sequencing), brain inflammation (brain tissue quantitative PCR) and microbiome diversity (16S RNA sequencing). High-salt diet did not affect systemic blood pressure or heart rate in sham or injured mice. High-salt diet increased anxiety-like behaviour in injured mice compared to sham mice fed with high-salt diet and injured mice fed with normal diet. Increased anxiety in injured mice that received a high-salt diet was associated with microgliosis and a proinflammatory microglial transcriptomic signature, including upregulation in interferon-gamma, interferon-beta and oxidative stress-related pathways. Accordingly, we found upregulation of tumour necrosis factor-alpha and interferon-gamma mRNA in the brain tissue of high salt diet-fed injured mice. High-salt diet had a larger effect on the gut microbiome composition than repetitive closed head injury. Increases in gut microbes in the families Lachnospiraceae, Erysipelotrichaceae and Clostridiaceae were positively correlated with anxiety-like behaviours. In contrast, Muribaculaceae, Acholeplasmataceae and Lactobacillaceae were negatively correlated with anxiety in injured mice that received a high-salt diet, a time-dependent effect. The findings suggest that high-salt diet, administered after a recovery period, may affect neurologic outcomes following mild repetitive head injury, including the development of anxiety. This effect was linked to microbiome dysregulation and an exacerbation of microglial inflammation, which may be physiological targets to prevent behavioural sequelae in the chronic period after mild repetitive head injury. The data suggest an important contribution of diet in determining long-term outcomes after mild repetitive head injury.

4.
Mucosal Immunol ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925529

RESUMEN

Dietary proteins are taken up by intestinal dendritic cells (DCs), cleaved into peptides, loaded to major histocompatibility complexes, and presented to T cells to generate an immune response. Amino acid (AA)-diets do not have the same effects because AAs cannot bind to major histocompatibility complex to activate T cells. Here, we show that impairment in regulatory T cell generation and loss of tolerance in mice fed a diet lacking whole protein is associated with major transcriptional changes in intestinal DCs including downregulation of genes related to DC maturation, activation and decreased gene expression of immune checkpoint molecules. Moreover, the AA-diet had a profound effect on microbiome composition, including an increase in Akkermansia muciniphilia and Oscillibacter and a decrease in Lactococcus lactis and Bifidobacterium. Although microbiome transfer experiments showed that AA-driven microbiome modulates intestinal DC gene expression, most of the unique transcriptional change in DC was linked to the absence of whole protein in the diet. Our findings highlight the importance of dietary proteins for intestinal DC function and mucosal tolerance.

5.
Epilepsia ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943543

RESUMEN

OBJECTIVES: A surgical "treatment gap" in pediatric epilepsy persists despite the demonstrated safety and effectiveness of surgery. For this reason, the national surgical landscape should be investigated such that an updated assessment may more appropriately guide health care efforts. METHODS: In our retrospective cross-sectional observational study, the National Inpatient Sample (NIS) database was queried for individuals 0 to <18 years of age who had an International Classification of Diseases (ICD) code for drug-resistant epilepsy (DRE). This cohort was then split into a medical group and a surgical group. The former was defined by ICD codes for -DRE without an accompanying surgical code, and the latter was defined by DRE and one of the following epilepsy surgeries: any open surgery; laser interstitial thermal therapy (LITT); vagus nerve stimulation; or responsive neurostimulation (RNS) from 1998 to 2020. Demographic variables of age, gender, race, insurance type, hospital charge, and hospital characteristics were analyzed between surgical options. Continuous variables were analyzed with weight-adjusted quantile regression analysis, and categorical variables were analyzed by weight-adjusted counts with percentages and compared with weight-adjusted chi-square test results. RESULTS: These data indicate an increase in epilepsy surgeries over a 22-year period, primarily due to a statistically significant increase in open surgery and a non-significant increase in minimally invasive techniques, such as LITT and RNS. There are significant differences in age, race, gender, insurance type, median household income, Elixhauser index, hospital setting, and size between the medical and surgical groups, as well as the procedure performed. SIGNIFICANCE: An increase in open surgery and minimally invasive surgeries (LITT and RNS) account for the overall rise in pediatric epilepsy surgery over the last 22 years. A positive inflection point in open surgery is seen in 2005. Socioeconomic disparities exist between medical and surgical groups. Patient and hospital sociodemographics show significant differences between the procedure performed. Further efforts are required to close the surgical "treatment gap."

6.
Childs Nerv Syst ; 40(8): 2367-2372, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38856743

RESUMEN

INTRODUCTION: Outcomes for pineal region and superior cerebellar tumors in young children often hinge on extent of microsurgical resection, and thus choosing an approach that provides adequate visualization of pathology is essential. The occipital interhemispheric transtentorial (OITT) approach provides excellent exposure while minimizing cerebellar retraction. However, this approach has not been widely accepted as a viable option for very young children due to concerns for potential blood loss when incising the tentorium. The aim of this paper is to characterize our recent institutional experience with the occipital interhemispheric transtentorial approach (OITT) for tumor resection in infants and toddlers. METHODS: A retrospective study was performed between 2016 and 2023 of pediatric patients less than 36 months of age who underwent OITT for tumor resection at a high-volume referral center. Patients with at least 3 months of postoperative follow-up and postoperative MRI were included. Primary outcomes included extent of resection, intraoperative and postoperative complications, and neurologic outcome. Secondary outcomes included length of stay and estimated blood loss. RESULTS: Eight patients, five male, were included. The median age at the time of surgery was 10 months (range 5-36 months). Presenting symptoms included macrocephaly, nausea/vomiting, strabismus, gait instability, or milestone regression. Hydrocephalus was present preoperatively in all patients. Average tumor volume was 38.6 cm3, ranging from 1.3 to 71.9 cm3. All patients underwent an OITT approach for tumor resection with stereotactic guidance. No intraoperative complications occurred, and no permanent neurologic deficits developed postoperatively. Gross total resection was achieved in all cases per postoperative MRI report, and no instances of new cerebellar, brainstem, or occipital lobe ischemia were noted. CONCLUSIONS: OITT approach for tumor resection in very young children (≤ 36 months) is an effective strategy with an acceptable safety profile. In our series, no significant intraoperative or postoperative complications occurred. To our knowledge, this is the first report describing this technique specifically in patients less than 36 months of age.


Asunto(s)
Procedimientos Neuroquirúrgicos , Complicaciones Posoperatorias , Humanos , Lactante , Masculino , Femenino , Estudios Retrospectivos , Preescolar , Procedimientos Neuroquirúrgicos/métodos , Complicaciones Posoperatorias/etiología , Resultado del Tratamiento , Neoplasias Cerebelosas/cirugía , Neoplasias Encefálicas/cirugía , Pinealoma/cirugía
7.
bioRxiv ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38853824

RESUMEN

Recent findings indicate a correlation between the peripheral adaptive immune system and neuroinflammation in Alzheimer's disease (AD). To characterize the composition of adaptive immune cells in the peripheral blood of AD patients, we utilized single-cell mass cytometry (CyTOF) to profile peripheral blood mononuclear cells (PBMCs). Concurrently, we assessed the concentration of proteins associated with AD and neuroinflammation in the plasma of the same subjects. We found that the abundance of proinflammatory CXCR3 + CD127 + Type 1 T helper (Th1) cells in AD patients was negatively correlated with the abundance of neurofilament light chain (NfL) protein. This correlation is apolipoprotein E (ApoE) ε4-dependent. Analyzing public single-cell RNA-sequencing (scRNA-seq) data, we found that, contrary to the scenario in the peripheral blood, the cell frequency of CXCR3 + CD127 + Th1 cells in the cerebrospinal fluid (CSF) of AD patients was increased compared to healthy controls (HCs). Moreover, the proinflammatory capacity of CXCR3 + CD127 + Th1 cells in the CSF of AD patients was further increased compared to HCs. These results reveal an association of a peripheral T-cell change with neuroinflammation in AD and suggest that dysregulation of peripheral adaptive immune responses, particularly involving CXCR3 + CD127 + Th1 cells, may potentially be mediated by factors such as ApoE ε4 genotype. One sentence summary: An apolipoprotein E (ApoE) ε4-dependent alteration of CD4 T cell subpopulation in peripheral blood is associated with neuroinflammation in patients with Alzheimer's disease.

8.
J Clin Neurophysiol ; 41(5): 405-409, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38935653

RESUMEN

PURPOSE: Stereoelectroencephalography (SEEG) is widely performed on individuals with medically refractory epilepsy for whom invasive seizure localization is desired. Despite increasing adoption in many centers across the world, no standardized electrode naming convention exists, generating confusion among both clinical and research teams. METHODS: We have developed a novel nomenclature, named the Standardized Electrode Nomenclature for SEEG Applications system. Concise, unique, informative, and unambiguous labels provide information about entry point, deep targets, and relationships between electrodes. Inter-rater agreement was evaluated by comparing original electrode names from 10 randomly sampled cases (including 136 electrodes) with those prospectively assigned by four additional blinded raters. RESULTS: The Standardized Electrode Nomenclature for SEEG Application system was prospectively implemented in 40 consecutive patients undergoing SEEG monitoring at our institution, creating unique electrode names in all cases, and facilitating implantation design, SEEG recording and mapping interpretation, and treatment planning among neurosurgeons, neurologists, and neurophysiologists. The inter-rater percent agreement for electrode names among two neurosurgeons, two epilepsy neurologists, and one neurosurgical fellow was 97.5%. CONCLUSIONS: This standardized naming convention, Standardized Electrode Nomenclature for SEEG Application, provides a simple, concise, reproducible, and informative method for specifying the target(s) and relative position of each SEEG electrode in each patient, allowing for successful sharing of information in both the clinical and research settings. General adoption of this nomenclature could pave the way for improved communication and collaboration between institutions.


Asunto(s)
Electrodos Implantados , Electroencefalografía , Técnicas Estereotáxicas , Terminología como Asunto , Humanos , Electroencefalografía/normas , Electroencefalografía/métodos , Técnicas Estereotáxicas/normas , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Femenino , Masculino , Encéfalo/fisiopatología , Encéfalo/fisiología , Epilepsia Refractaria/diagnóstico , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/clasificación
9.
Front Immunol ; 15: 1360219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745667

RESUMEN

Background: Regulatory B cells (Bregs) play a pivotal role in suppressing immune responses, yet there is still a lack of cell surface markers that can rigorously identify them. In mouse models for multiple sclerosis (MS), TIM-1 or TIGIT expression on B cells is required for maintaining self-tolerance and regulating autoimmunity to the central nervous system. Here we investigated the activities of human memory B cells that differentially express TIM-1 and TIGIT to determine their potential regulatory function in healthy donors and patients with relapsing-remitting (RR) MS. Methods: FACS-sorted TIM-1+/-TIGIT+/- memory B (memB) cells co-cultured with allogenic CD4+ T cells were analyzed for proliferation and induction of inflammatory markers using flow cytometry and cytokine quantification, to determine Th1/Th17 cell differentiation. Transcriptional differences were assessed by SMARTSeq2 RNA sequencing analysis. Results: TIM-1-TIGIT- double negative (DN) memB cells strongly induce T cell proliferation and pro-inflammatory cytokine expression. The TIM-1+ memB cells enabled low levels of CD4+ T cell activation and gave rise to T cells that co-express IL-10 with IFNγ and IL-17A or FoxP3. T cells cultured with the TIM-1+TIGIT+ double positive (DP) memB cells exhibited reduced proliferation and IFNγ, IL-17A, TNFα, and GM-CSF expression, and exhibited strong regulation in Breg suppression assays. The functional activity suggests the DP memB cells are a bonafide Breg population. However, MS DP memB cells were less inhibitory than HC DP memB cells. A retrospective longitudinal study of anti-CD20 treated patients found that post-treatment DP memB cell frequency and absolute number were associated with response to therapy. Transcriptomic analyses indicated that the dysfunctional MS-derived DP memB/Breg population exhibited increased expression of genes associated with T cell activation and survival (CD80, ZNF10, PIK3CA), and had distinct gene expression compared to the TIGIT+ or TIM-1+ memB cells. Conclusion: These findings demonstrate that TIM-1/TIGIT expressing memory B cell subsets have distinct functionalities. Co-expression of TIM-1 and TIGIT defines a regulatory memory B cell subset that is functionally impaired in MS.


Asunto(s)
Linfocitos B Reguladores , Receptor Celular 1 del Virus de la Hepatitis A , Receptores Inmunológicos , Humanos , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Linfocitos B Reguladores/inmunología , Linfocitos B Reguladores/metabolismo , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Receptor Celular 1 del Virus de la Hepatitis A/genética , Femenino , Masculino , Adulto , Células B de Memoria/inmunología , Esclerosis Múltiple Recurrente-Remitente/inmunología , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Citocinas/metabolismo , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Activación de Linfocitos/inmunología , Persona de Mediana Edad , Células Cultivadas , Diferenciación Celular/inmunología , Memoria Inmunológica
10.
Adv Tech Stand Neurosurg ; 49: 291-306, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38700689

RESUMEN

Pediatric epilepsy has a worldwide prevalence of approximately 1% (Berg et al., Handb Clin Neurol 111:391-398, 2013) and is associated with not only lower quality of life but also long-term deficits in executive function, significant psychosocial stressors, poor cognitive outcomes, and developmental delays (Schraegle and Titus, Epilepsy Behav 62:20-26, 2016; Puka and Smith, Epilepsia 56:873-881, 2015). With approximately one-third of patients resistant to medical control, surgical intervention can offer a cure or palliation to decrease the disease burden and improve neurological development. Despite its potential, epilepsy surgery is drastically underutilized. Even today only 1% of the millions of epilepsy patients are referred annually for neurosurgical evaluation, and the average delay between diagnosis of Drug Resistant Epilepsy (DRE) and surgical intervention is approximately 20 years in adults and 5 years in children (Solli et al., Epilepsia 61:1352-1364, 2020). It is still estimated that only one-third of surgical candidates undergo operative intervention (Pestana Knight et al., Epilepsia 56:375, 2015). In contrast to the stable to declining rates of adult epilepsy surgery (Englot et al., Neurology 78:1200-1206, 2012; Neligan et al., Epilepsia 54:e62-e65, 2013), rates of pediatric surgery are rising (Pestana Knight et al., Epilepsia 56:375, 2015). Innovations in surgical approaches to epilepsy not only minimize potential complications but also expand the definition of a surgical candidate. In this chapter, three alternatives to classical resection are presented. First, laser ablation provides a minimally invasive approach to focal lesions. Next, both central and peripheral nervous system stimulation can interrupt seizure networks without creating permanent lesions. Lastly, focused ultrasound is discussed as a potential new avenue not only for ablation but also modulation of small, deep foci within seizure networks. A better understanding of the potential surgical options can guide patients and providers to explore all treatment avenues.


Asunto(s)
Epilepsia , Procedimientos Neuroquirúrgicos , Niño , Humanos , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia/cirugía , Terapia por Láser/métodos , Procedimientos Neuroquirúrgicos/métodos
11.
Nat Commun ; 15(1): 3872, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719797

RESUMEN

The gut microbiota and microglia play critical roles in Alzheimer's disease (AD), and elevated Bacteroides is correlated with cerebrospinal fluid amyloid-ß (Aß) and tau levels in AD. We hypothesize that Bacteroides contributes to AD by modulating microglia. Here we show that administering Bacteroides fragilis to APP/PS1-21 mice increases Aß plaques in females, modulates cortical amyloid processing gene expression, and down regulates phagocytosis and protein degradation microglial gene expression. We further show that administering Bacteroides fragilis to aged wild-type male and female mice suppresses microglial uptake of Aß1-42 injected into the hippocampus. Depleting murine Bacteroidota with metronidazole decreases amyloid load in aged 5xFAD mice, and activates microglial pathways related to phagocytosis, cytokine signaling, and lysosomal degradation. Taken together, our study demonstrates that members of the Bacteroidota phylum contribute to AD pathogenesis by suppressing microglia phagocytic function, which leads to impaired Aß clearance and accumulation of amyloid plaques.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Ratones Transgénicos , Microglía , Fagocitosis , Placa Amiloide , Animales , Microglía/metabolismo , Microglía/efectos de los fármacos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/microbiología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Placa Amiloide/metabolismo , Femenino , Ratones , Masculino , Bacteroides fragilis/metabolismo , Microbioma Gastrointestinal , Humanos , Ratones Endogámicos C57BL , Hipocampo/metabolismo , Hipocampo/patología
12.
Nat Commun ; 15(1): 4297, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769309

RESUMEN

The multifaceted nature of multiple sclerosis requires quantitative biomarkers that can provide insights related to diverse physiological pathways. To this end, proteomic analysis of deeply-phenotyped serum samples, biological pathway modeling, and network analysis were performed to elucidate inflammatory and neurodegenerative processes, identifying sensitive biomarkers of multiple sclerosis disease activity. Here, we evaluated the concentrations of > 1400 serum proteins in 630 samples from three multiple sclerosis cohorts for association with clinical and radiographic new disease activity. Twenty proteins were associated with increased clinical and radiographic multiple sclerosis disease activity for inclusion in a custom assay panel. Serum neurofilament light chain showed the strongest univariate correlation with gadolinium lesion activity, clinical relapse status, and annualized relapse rate. Multivariate modeling outperformed univariate for all endpoints. A comprehensive biomarker panel including the twenty proteins identified in this study could serve to characterize disease activity for a patient with multiple sclerosis.


Asunto(s)
Biomarcadores , Esclerosis Múltiple , Proteómica , Humanos , Biomarcadores/sangre , Esclerosis Múltiple/sangre , Esclerosis Múltiple/diagnóstico por imagen , Femenino , Masculino , Adulto , Proteómica/métodos , Persona de Mediana Edad , Proteínas de Neurofilamentos/sangre , Proteínas Sanguíneas/análisis , Imagen por Resonancia Magnética/métodos , Inflamación/sangre , Estudios de Cohortes
13.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798574

RESUMEN

When we speak, we not only make movements with our mouth, lips, and tongue, but we also hear the sound of our own voice. Thus, speech production in the brain involves not only controlling the movements we make, but also auditory and sensory feedback. Auditory responses are typically suppressed during speech production compared to perception, but how this manifests across space and time is unclear. Here we recorded intracranial EEG in seventeen pediatric, adolescent, and adult patients with medication-resistant epilepsy who performed a reading/listening task to investigate how other auditory responses are modulated during speech production. We identified onset and sustained responses to speech in bilateral auditory cortex, with a selective suppression of onset responses during speech production. Onset responses provide a temporal landmark during speech perception that is redundant with forward prediction during speech production. Phonological feature tuning in these "onset suppression" electrodes remained stable between perception and production. Notably, the posterior insula responded at sentence onset for both perception and production, suggesting a role in multisensory integration during feedback control.

14.
Pediatr Infect Dis J ; 43(8): e261-e267, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38621168

RESUMEN

BACKGROUND: The Streptococcus anginosus group (SAG) pathogens have the potential to cause head and neck space infections, including intracranial abscesses. Several centers noted an increase in intracranial abscesses in children during the SARS-CoV-2 pandemic, prompting a Centers for Disease Control and Prevention health alert in May 2022. We examined the epidemiology of pediatric intracranial abscesses at a tertiary care center with a focus on SAG pre- and post-pandemic. METHODS: Cases of intracranial abscesses of any microbiologic etiology admitted from January 2011 to December 2022 were identified using International Classification of Diseases 10 codes. Subjects were cross-referenced with culture results from the microbiology laboratory at Texas Children's Hospital. Cases included were those associated with either otitis media, mastoiditis or sinusitis and medical records were reviewed. RESULTS: A total of 157 cases were identified and 59.9% (n = 94) were caused by SAG. The incidence of all sinogenic/otogenic intracranial infections ( P = 0.002), and SAG-specific infections ( P = 0.004), increased from 2011 to 2022. SAG infection was more often associated with multiple surgeries, and these subjects were more likely to require craniotomy or craniectomy. Among sinogenic abscesses, S. intermedius was the most common pathogen, while among otogenic cases, S. pyogenes predominated. From March 2020 to Dec 2022, 9/49 cases tested positive for SARS-CoV-2 (18.4%); characteristics of infection were not significantly different among cases with and without SARS-CoV-2. CONCLUSIONS: Over the last decade, intracranial complications of sinusitis/otitis have been increasing, specifically those caused by SAG; this trend, however, predated the SARS-CoV-2 pandemic. SAG was associated with a greater need for surgical intervention, specifically neurosurgery. Further work is necessary to determine the cause for these rising infections.


Asunto(s)
Absceso Encefálico , COVID-19 , Mastoiditis , Otitis Media , Sinusitis , Infecciones Estreptocócicas , Streptococcus anginosus , Humanos , Mastoiditis/epidemiología , Mastoiditis/microbiología , Niño , Femenino , Masculino , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/microbiología , Preescolar , Incidencia , Sinusitis/microbiología , Sinusitis/epidemiología , Streptococcus anginosus/aislamiento & purificación , Lactante , Otitis Media/epidemiología , Otitis Media/microbiología , Absceso Encefálico/microbiología , Absceso Encefálico/epidemiología , COVID-19/epidemiología , COVID-19/complicaciones , Adolescente , Texas/epidemiología , SARS-CoV-2 , Estudios Retrospectivos
15.
Clin Nucl Med ; 49(6): 491-499, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38630948

RESUMEN

PURPOSE OF THE REPORT: 18 F-PBR06-PET targeting 18-kDa translocator protein can detect abnormal microglial activation (MA) in multiple sclerosis (MS). The objectives of this study are to develop individualized mapping of MA using 18 F-PBR06, to determine the effect of disease-modifying treatment (DMT) efficacy on reducing MA, and to determine its clinical, radiological, and serological correlates in MS patients. PATIENTS AND METHODS: Thirty 18 F-PBR06-PET scans were performed in 22 MS patients (mean age, 46 ± 13 years; 16 females) and 8 healthy controls (HCs). Logarithmically transformed "glial activity load on PET" scores (calculated as the sum of voxel-by-voxel z -scores ≥4), "lnGALP," were compared between MS and HC and between MS subjects on high-efficacy DMTs (H-DMT, n = 13) and those on no or lower-efficacy treatment, and correlated with clinical measures, serum biomarkers, and cortical thickness. RESULTS: Cortical gray matter (CoGM) and white matter (WM) lnGALP scores were higher in MS versus HC (+33% and +48%, P < 0.001). In H-DMT group, CoGM and WM lnGALP scores were significantly lower than lower-efficacy treatment ( P < 0.01) but remained abnormally higher than in HC group ( P = 0.006). Within H-DMT patients, CoGM lnGALP scores correlated positively with physical disability, fatigue and serum glial fibrillary acid protein levels ( r = 0.65-0.79, all P 's < 0.05), and inversely with cortical thickness ( r = -0.66, P < 0.05). CONCLUSIONS: High-efficacy DMTs decrease, but do not normalize, CoGM and WM MA in MS patients. Such "residual" MA in CoGM is associated with clinical disability, serum biomarkers, and cortical degeneration. Individualized mapping of translocator protein PET using 18 F-PBR06 is clinically feasible and can potentially serve as an imaging biomarker for evaluating "smoldering" inflammation in MS patients.


Asunto(s)
Inflamación , Esclerosis Múltiple , Neuroglía , Tomografía de Emisión de Positrones , Humanos , Femenino , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/fisiopatología , Esclerosis Múltiple/sangre , Inflamación/diagnóstico por imagen , Neuroglía/metabolismo , Adulto
16.
J Neurosurg Pediatr ; 33(6): 516-523, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552237

RESUMEN

OBJECTIVE: Patients who experience postoperative pediatric cerebellar mutism syndrome (CMS) during treatment for medulloblastoma have long-term deficits in neurocognitive functioning; however, the consequences on functional or adaptive outcomes are unknown. The purpose of the present study was to compare adaptive, behavioral, and emotional functioning between survivors with and those without a history of CMS. METHODS: The authors examined outcomes in 45 survivors (15 with CMS and 30 without CMS). Comprehensive neuropsychological evaluations, which included parent-report measures of adaptive, behavioral, and emotional functioning, were completed at a median of 2.90 years following craniospinal irradiation. RESULTS: Adaptive functioning was significantly worse in the CMS group for practical and general adaptive skills compared with the group without CMS. Rates of impairment in practical, conceptual, and general adaptive skills in the CMS group exceeded expected rates in the general population. Despite having lower overall intellectual functioning, working memory, and processing speed, IQ and related cognitive processes were uncorrelated with adaptive outcomes in the CMS group. No significant group differences or increased rates of impairment were observed for behavioral and emotional outcomes. CONCLUSIONS: Survivors with CMS, compared with those without CMS, are rated as having significant deficits in overall or general adaptive functioning, with specific weakness in practical skills several years posttreatment. Findings from this study demonstrate the high risk for ongoing functional deficits despite acute recovery from symptoms of CMS, highlighting the need for intervention to mitigate such risk.


Asunto(s)
Adaptación Psicológica , Neoplasias Cerebelosas , Meduloblastoma , Mutismo , Humanos , Meduloblastoma/cirugía , Meduloblastoma/radioterapia , Meduloblastoma/psicología , Meduloblastoma/complicaciones , Masculino , Femenino , Niño , Mutismo/etiología , Mutismo/psicología , Neoplasias Cerebelosas/cirugía , Neoplasias Cerebelosas/psicología , Neoplasias Cerebelosas/radioterapia , Neoplasias Cerebelosas/complicaciones , Adolescente , Emociones , Pruebas Neuropsicológicas , Complicaciones Posoperatorias/psicología , Complicaciones Posoperatorias/etiología , Preescolar
19.
Brain Behav Immun ; 117: 242-254, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38281671

RESUMEN

Intestinal γδ T cells play an important role in shaping the gut microbiota, which is critical not only for maintaining intestinal homeostasis but also for controlling brain function and behavior. Here, we found that mice deficient for γδ T cells (γδ-/-) developed an abnormal pattern of repetitive/compulsive (R/C) behavior, which was dependent on the gut microbiota. Colonization of WT mice with γδ-/- microbiota induced R/C behavior whereas colonization of γδ-/- mice with WT microbiota abolished the R/C behavior. Moreover, γδ-/- mice had elevated levels of the microbial metabolite 3-phenylpropanoic acid in their cecum, which is a precursor to hippurate (HIP), a metabolite we found to be elevated in the CSF. HIP reaches the striatum and activates dopamine type 1 (D1R)-expressing neurons, leading to R/C behavior. Altogether, these data suggest that intestinal γδ T cells shape the gut microbiota and their metabolites and prevent dysfunctions of the striatum associated with behavior modulation.


Asunto(s)
Microbioma Gastrointestinal , Hipuratos , Linfocitos T , Animales , Ratones , Cuerpo Estriado , Neuronas , Conducta Compulsiva
20.
Epilepsia ; 65(1): 46-56, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37347512

RESUMEN

OBJECTIVES: Although hemispheric surgeries are among the most effective procedures for drug-resistant epilepsy (DRE) in the pediatric population, there is a large variability in seizure outcomes at the group level. A recently developed HOPS score provides individualized estimation of likelihood of seizure freedom to complement clinical judgement. The objective of this study was to develop a freely accessible online calculator that accurately predicts the probability of seizure freedom for any patient at 1-, 2-, and 5-years post-hemispherectomy. METHODS: Retrospective data of all pediatric patients with DRE and seizure outcome data from the original Hemispherectomy Outcome Prediction Scale (HOPS) study were included. The primary outcome of interest was time-to-seizure recurrence. A multivariate Cox proportional-hazards regression model was developed to predict the likelihood of post-hemispheric surgery seizure freedom at three time points (1-, 2- and 5- years) based on a combination of variables identified by clinical judgment and inferential statistics predictive of the primary outcome. The final model from this study was encoded in a publicly accessible online calculator on the International Network for Epilepsy Surgery and Treatment (iNEST) website (https://hops-calculator.com/). RESULTS: The selected variables for inclusion in the final model included the five original HOPS variables (age at seizure onset, etiologic substrate, seizure semiology, prior non-hemispheric resective surgery, and contralateral fluorodeoxyglucose-positron emission tomography [FDG-PET] hypometabolism) and three additional variables (age at surgery, history of infantile spasms, and magnetic resonance imaging [MRI] lesion). Predictors of shorter time-to-seizure recurrence included younger age at seizure onset, prior resective surgery, generalized seizure semiology, FDG-PET hypometabolism contralateral to the side of surgery, contralateral MRI lesion, non-lesional MRI, non-stroke etiologies, and a history of infantile spasms. The area under the curve (AUC) of the final model was 73.0%. SIGNIFICANCE: Online calculators are useful, cost-free tools that can assist physicians in risk estimation and inform joint decision-making processes with patients and families, potentially leading to greater satisfaction. Although the HOPS data was validated in the original analysis, the authors encourage external validation of this new calculator.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Hemisferectomía , Espasmos Infantiles , Niño , Humanos , Hemisferectomía/métodos , Espasmos Infantiles/cirugía , Estudios Retrospectivos , Fluorodesoxiglucosa F18 , Resultado del Tratamiento , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Convulsiones/diagnóstico , Convulsiones/etiología , Convulsiones/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Imagen por Resonancia Magnética , Electroencefalografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA