Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nat Food ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730272
2.
Proc Natl Acad Sci U S A ; 120(47): e2307773120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37963246

RESUMEN

The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus suis , Enfermedades de los Porcinos , Animales , Humanos , Porcinos , Infecciones Estreptocócicas/veterinaria , Granjas , Enfermedades de los Porcinos/epidemiología , Virulencia/genética , Streptococcus suis/genética , Ganado
3.
PLoS Pathog ; 19(6): e1011433, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37289828

RESUMEN

Virus host shifts, where a virus transmits to and infects a novel host species, are a major source of emerging infectious disease. Genetic similarity between eukaryotic host species has been shown to be an important determinant of the outcome of virus host shifts, but it is unclear if this is the case for prokaryotes where anti-virus defences can be transmitted by horizontal gene transfer and evolve rapidly. Here, we measure the susceptibility of 64 strains of Staphylococcaceae bacteria (48 strains of Staphylococcus aureus and 16 non-S. aureus species spanning 2 genera) to the bacteriophage ISP, which is currently under investigation for use in phage therapy. Using three methods-plaque assays, optical density (OD) assays, and quantitative (q)PCR-we find that the host phylogeny explains a large proportion of the variation in susceptibility to ISP across the host panel. These patterns were consistent in models of only S. aureus strains and models with a single representative from each Staphylococcaceae species, suggesting that these phylogenetic effects are conserved both within and among host species. We find positive correlations between susceptibility assessed using OD and qPCR and variable correlations between plaque assays and either OD or qPCR, suggesting that plaque assays alone may be inadequate to assess host range. Furthermore, we demonstrate that the phylogenetic relationships between bacterial hosts can generally be used to predict the susceptibility of bacterial strains to phage infection when the susceptibility of closely related hosts is known, although this approach produced large prediction errors in multiple strains where phylogeny was uninformative. Together, our results demonstrate the ability of bacterial host evolutionary relatedness to explain differences in susceptibility to phage infection, with implications for the development of ISP both as a phage therapy treatment and as an experimental system for the study of virus host shifts.


Asunto(s)
Bacteriófagos , Staphylococcaceae , Fagos de Staphylococcus , Bacteriófagos/fisiología , Especificidad del Huésped , Filogenia , Reacción en Cadena de la Polimerasa , Staphylococcaceae/clasificación , Staphylococcaceae/virología , Staphylococcus aureus/virología , Fagos de Staphylococcus/fisiología , Ensayo de Placa Viral , Replicación Viral
4.
Microbiol Spectr ; 11(4): e0485822, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37341608

RESUMEN

Staphylococcus aureus is a human commensal and opportunistic pathogen that also infects other animals. In humans and livestock, where S. aureus is most studied, strains are specialized for different host species. Recent studies have also found S. aureus in diverse wild animals. However, it remains unclear whether these isolates are also specialized for their hosts or whether their presence is due to repeated spillovers from source populations. This study focuses on S. aureus in fish, testing the spillover hypothesis in two ways. First, we examined 12 S. aureus isolates obtained from the internal and external organs of a farmed fish. While all isolates were from clonal complex 45, genomic diversity indicates repeated acquisition. The presence of a φSa3 prophage containing human immune evasion genes suggests that the source was originally human. Second, we tested for S. aureus in wild fish that were isolated from likely sources. In particular, we sampled 123 brown trout and their environment at 16 sites in the remote Scottish Highlands with variable levels of exposure to humans, birds, and livestock. This screen found no S. aureus infection in any of the wild populations or their environment. Together, these results support that the presence of S. aureus in fish and aquaculture is due to spillover from humans rather than specialization. Given the trends of increasing fish consumption, a better understanding of the dynamics of S. aureus spillover in aquaculture will mitigate future risks to fish and human health. IMPORTANCE Staphylococcus aureus is a human and livestock commensal but also an important pathogen responsible for high human mortality rates and economic losses in farming. Recent studies show that S. aureus is common in wild animals, including fish. However, we do not know whether these animals are part of the normal host range of S. aureus or whether infection is due to repeated spillover events from true S. aureus hosts. Answering this question has implications for public health and conservation. We find support for the spillover hypothesis by combining genome sequencing of S. aureus isolates from farmed fish and screens for S. aureus in isolated wild populations. The results imply that fish are unlikely to be a source of novel emergent S. aureus strains but highlight the prominence of the spillover of antibiotic-resistant bacteria from humans and livestock. This may affect both future fish disease potential and the risk of human food poisoning.


Asunto(s)
Staphylococcus aureus , Trucha , Escocia , Humanos , Trucha/microbiología , Explotaciones Pesqueras , Staphylococcus aureus/aislamiento & purificación , Londres , Enterotoxinas/análisis
5.
Microbiol Spectr ; : e0421322, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36815781

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) clonal-complex 398 (CC398) is the dominant livestock-associated (LA) MRSA lineage in European livestock and an increasing cause of difficult-to-treat human disease. LA-CC398 MRSA evolved from a diverse human-associated methicillin-sensitive population, and this transition from humans to livestock was associated with three mobile genetic elements (MGEs). In this study, we apply transposon-directed insertion site sequencing (TraDIS), a high-throughput transposon mutagenesis approach, to investigate genetic signatures that contribute to LA-CC398 causing disease in humans. We identified 26 genes associated with LA-CC398 survival in human blood and 47 genes in porcine blood. We carried out phylogenetic reconstruction on 1,180 CC398 isolates to investigate the genetic context of all identified genes. We found that all genes associated with survival in human blood were part of the CC398 core genome, while 2/47 genes essential for survival in porcine blood were located on MGEs. Gene SAPIG0966 was located on the previously identified Tn916 transposon carrying a tetracycline resistance gene, which has been shown to be stably inherited within LA-CC398. Gene SAPIG1525 was carried on a phage element, which in part, matched phiSa2wa_st1, a previously identified bacteriophage carrying the Panton-Valentine leucocidin (PVL) virulence factor. Gene deletion mutants constructed in two LA-CC398 strains confirmed that the SAPIG0966 carrying Tn916 and SAPIG1525 were important for CC398 survival in porcine blood. Our study shows that MGEs that carry antimicrobial resistance and virulence genes could have a secondary function in bacterial survival in blood and may be important for host adaptation. IMPORTANCE CC398 is the dominant type of methicillin-resistant Staphylococcus aureus (MRSA) in European livestock and a growing cause of human infections. Previous studies have suggested MRSA CC398 evolved from human-associated methicillin-sensitive Staphylococcus aureus and is capable of rapidly readapting to human hosts while maintaining antibiotic resistance. Using high-throughput transposon mutagenesis, our study identified 26 and 47 genes important for MRSA CC398 survival in human and porcine blood, respectively. Two of the genes important for MRSA CC398 survival in porcine blood were located on mobile genetic elements (MGEs) carrying resistance or virulence genes. Our study shows that these MGEs carrying antimicrobial resistance and virulence genes could have a secondary function in bacterial survival in blood and may be important for blood infection and host adaptation.

6.
Nucleic Acids Res ; 51(7): 3240-3260, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36840716

RESUMEN

Actinobacillus pleuropneumoniae is the cause of porcine pleuropneumonia, a severe respiratory tract infection that is responsible for major economic losses to the swine industry. Many host-adapted bacterial pathogens encode systems known as phasevarions (phase-variable regulons). Phasevarions result from variable expression of cytoplasmic DNA methyltransferases. Variable expression results in genome-wide methylation differences within a bacterial population, leading to altered expression of multiple genes via epigenetic mechanisms. Our examination of a diverse population of A. pleuropneumoniae strains determined that Type I and Type III DNA methyltransferases with the hallmarks of phase variation were present in this species. We demonstrate that phase variation is occurring in these methyltransferases, and show associations between particular Type III methyltransferase alleles and serovar. Using Pacific BioSciences Single-Molecule, Real-Time (SMRT) sequencing and Oxford Nanopore sequencing, we demonstrate the presence of the first ever characterised phase-variable, cytosine-specific Type III DNA methyltransferase. Phase variation of distinct Type III DNA methyltransferase in A. pleuropneumoniae results in the regulation of distinct phasevarions, and in multiple phenotypic differences relevant to pathobiology. Our characterisation of these newly described phasevarions in A. pleuropneumoniae will aid in the selection of stably expressed antigens, and direct and inform development of a rationally designed subunit vaccine against this major veterinary pathogen.


Asunto(s)
Actinobacillus pleuropneumoniae , Variación de la Fase , Animales , Porcinos , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/metabolismo , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Metilación de ADN , Metiltransferasas/genética , Metiltransferasas/metabolismo , Bacterias/genética , ADN/metabolismo
7.
Elife ; 112022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35762208

RESUMEN

Mobile genetic elements (MGEs) are agents of horizontal gene transfer in bacteria, but can also be vertically inherited by daughter cells. Establishing the dynamics that led to contemporary patterns of MGEs in bacterial genomes is central to predicting the emergence and evolution of novel and resistant pathogens. Methicillin-resistant Staphylococcus aureus (MRSA) clonal-complex (CC) 398 is the dominant MRSA in European livestock and a growing cause of human infections. Previous studies have identified three categories of MGEs whose presence or absence distinguishes livestock-associated CC398 from a closely related and less antibiotic-resistant human-associated population. Here, we fully characterise the evolutionary dynamics of these MGEs using a collection of 1180 CC398 genomes, sampled from livestock and humans, over 27 years. We find that the emergence of livestock-associated CC398 coincided with the acquisition of a Tn916 transposon carrying a tetracycline resistance gene, which has been stably inherited for 57 years. This was followed by the acquisition of a type V SCCmec that carries methicillin, tetracycline, and heavy metal resistance genes, which has been maintained for 35 years, with occasional truncations and replacements with type IV SCCmec. In contrast, a class of prophages that carry a human immune evasion gene cluster and that are largely absent from livestock-associated CC398 have been repeatedly gained and lost in both human- and livestock-associated CC398. These contrasting dynamics mean that when livestock-associated MRSA is transmitted to humans, adaptation to the human host outpaces loss of antibiotic resistance. In addition, the stable inheritance of resistance-associated MGEs suggests that the impact of ongoing reductions in antibiotic and zinc oxide use in European farms on livestock-associated MRSA will be slow to be realised.


Antibiotic-resistant infections are a growing threat to human health. In 2019, these hard-to-treat infections resulted in 4.95 million deaths making them the third leading cause of death that year. Excessive use of antibiotics in humans is likely driving the emergence of drug-resistant bacteria. But there is a concern that use of antibiotics on livestock farms is also contributing. A type of bacteria traced back to livestock is a growing cause of human infections that do not respond to treatment with the antibiotic methicillin in Europe. It is called livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA). Bacteria can share genes that make them drug resistant or more deadly. These genes are often carried on mobile genetic elements that promote their movement from one bacterial cell to another. The most common type of LA-MRSA in Europe is clonal-complex 398 (CC398). It has two mobile genetic elements carrying antibiotic-resistance genes, but generally lacks a mobile genetic element that helps the bacterium escape the human immune system. Learning more about how LA-MRSA acquired these genetic changes may help scientists develop better strategies to protect the public. Matuszewska, Murray et al. analyzed the genomes of more than 1,000 samples of CC398 collected from humans, pigs and 13 other animal species in 28 countries over 27 years. They used this data to reconstruct the bacteria's evolutionary history. Matuszewska, Murray et al. show that two mobile elements containing antibiotic resistance genes in CC398 were gained decades ago. One is more than 50 years old and was likely acquired around the time antibiotic use in livestock became common. While most CC398 in livestock do not have a mobile element that helps LA-MRSA evade the human immune system, they often gain it when they infect humans. This leads to highly drug-resistant human MRSA infections. The results of this study suggest that LA-MRSA is a serious threat to human health. The resistance of this bacterium has persisted for decades, spreading across different livestock species and different countries. These drug-resistant bacteria in livestock readily infect humans. Current efforts to reduce antibiotic use in farms may take decades to mitigate these risks. Additionally, the ban on zinc-oxide use on livestock in the European Union (coming into force June 2022) may not help reduce LA-MRSA, because the genes conferring resistance to bacteria and zinc treatment are not always linked.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Humanos , Ganado/microbiología , Staphylococcus aureus Resistente a Meticilina/genética , Infecciones Estafilocócicas/microbiología
8.
PLoS Genet ; 17(11): e1009864, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34748531

RESUMEN

Mutation rates vary both within and between bacterial species, and understanding what drives this variation is essential for understanding the evolutionary dynamics of bacterial populations. In this study, we investigate two factors that are predicted to influence the mutation rate: ecology and genome size. We conducted mutation accumulation experiments on eight strains of the emerging zoonotic pathogen Streptococcus suis. Natural variation within this species allows us to compare tonsil carriage and invasive disease isolates, from both more and less pathogenic populations, with a wide range of genome sizes. We find that invasive disease isolates have repeatedly evolved mutation rates that are higher than those of closely related carriage isolates, regardless of variation in genome size. Independent of this variation in overall rate, we also observe a stronger bias towards G/C to A/T mutations in isolates from more pathogenic populations, whose genomes tend to be smaller and more AT-rich. Our results suggest that ecology is a stronger correlate of mutation rate than genome size over these timescales, and that transitions to invasive disease are consistently accompanied by rapid increases in mutation rate. These results shed light on the impact that ecology can have on the adaptive potential of bacterial pathogens.


Asunto(s)
Adaptación Biológica/genética , Enfermedades Transmisibles Emergentes/microbiología , Tasa de Mutación , Infecciones Estreptocócicas/microbiología , Streptococcus suis/genética , Zoonosis/microbiología , Animales , Ecología , Streptococcus suis/aislamiento & purificación , Streptococcus suis/patogenicidad , Virulencia/genética
9.
BMC Biol ; 19(1): 191, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493269

RESUMEN

BACKGROUND: Antimicrobial resistance (AMR) is among the gravest threats to human health and food security worldwide. The use of antimicrobials in livestock production can lead to emergence of AMR, which can have direct effects on humans through spread of zoonotic disease. Pigs pose a particular risk as they are a source of zoonotic diseases and receive more antimicrobials than most other livestock. Here we use a large-scale genomic approach to characterise AMR in Streptococcus suis, a commensal found in most pigs, but which can also cause serious disease in both pigs and humans. RESULTS: We obtained replicated measures of Minimum Inhibitory Concentration (MIC) for 16 antibiotics, across a panel of 678 isolates, from the major pig-producing regions of the world. For several drugs, there was no natural separation into 'resistant' and 'susceptible', highlighting the need to treat MIC as a quantitative trait. We found differences in MICs between countries, consistent with their patterns of antimicrobial usage. AMR levels were high even for drugs not used to treat S. suis, with many multidrug-resistant isolates. Similar levels of resistance were found in pigs and humans from regions associated with zoonotic transmission. We next used whole genome sequences for each isolate to identify 43 candidate resistance determinants, 22 of which were novel in S. suis. The presence of these determinants explained most of the variation in MIC. But there were also interesting complications, including epistatic interactions, where known resistance alleles had no effect in some genetic backgrounds. Beta-lactam resistance involved many core genome variants of small effect, appearing in a characteristic order. CONCLUSIONS: We present a large dataset allowing the analysis of the multiple contributing factors to AMR in S. suis. The high levels of AMR in S. suis that we observe are reflected by antibiotic usage patterns but our results confirm the potential for genomic data to aid in the fight against AMR.


Asunto(s)
Streptococcus suis , Animales , Antibacterianos/farmacología , Antiinfecciosos , Farmacorresistencia Bacteriana/genética , Genómica , Pruebas de Sensibilidad Microbiana , Preparaciones Farmacéuticas , Streptococcus suis/efectos de los fármacos , Streptococcus suis/genética , Porcinos
10.
Mol Biol Evol ; 38(4): 1570-1579, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33313861

RESUMEN

Emerging bacterial pathogens threaten global health and food security, and so it is important to ask whether these transitions to pathogenicity have any common features. We present a systematic study of the claim that pathogenicity is associated with genome reduction and gene loss. We compare broad-scale patterns across all bacteria, with detailed analyses of Streptococcus suis, an emerging zoonotic pathogen of pigs, which has undergone multiple transitions between disease and carriage forms. We find that pathogenicity is consistently associated with reduced genome size across three scales of divergence (between species within genera, and between and within genetic clusters of S. suis). Although genome reduction is also found in mutualist and commensal bacterial endosymbionts, genome reduction in pathogens cannot be solely attributed to the features of their ecology that they share with these species, that is, host restriction or intracellularity. Moreover, other typical correlates of genome reduction in endosymbionts (reduced metabolic capacity, reduced GC content, and the transient expansion of nonfunctional elements) are not consistently observed in pathogens. Together, our results indicate that genome reduction is a consistent correlate of pathogenicity in bacteria.


Asunto(s)
Bacterias/patogenicidad , Evolución Biológica , Tamaño del Genoma , Genoma Bacteriano , Animales , Bacterias/genética , Simbiosis
11.
Pathogens ; 9(5)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32422856

RESUMEN

Streptococcus suis is a swine pathogen and a zoonotic agent afflicting people in close contact with infected pigs or pork meat. Sporadic cases of human infections have been reported worldwide. In addition, S. suis outbreaks emerged in Asia, making this bacterium a primary health concern in this part of the globe. In pigs, S. suis disease results in decreased performance and increased mortality, which have a significant economic impact on swine production worldwide. Facing the new regulations in preventive use of antimicrobials in livestock and lack of effective vaccines, control of S. suis infections is worrisome. Increasing and sharing of knowledge on this pathogen is of utmost importance. As such, the pathogenesis and epidemiology of the infection, antimicrobial resistance, progress on diagnosis, prevention, and control were among the topics discussed during the 4th International Workshop on Streptococcus suis (held in Montreal, Canada, June 2019). This review gathers together recent findings on this important pathogen from lectures performed by lead researchers from several countries including Australia, Canada, France, Germany, Japan, Spain, Thailand, The Netherlands, UK, and USA. Finally, policies and recommendations for the manufacture, quality control, and use of inactivated autogenous vaccines are addressed to advance this important field in veterinary medicine.

12.
BMC Vet Res ; 16(1): 167, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32460764

RESUMEN

BACKGROUND: Glaesserella parasuis, the causative agent of Glӓsser's disease, is widespread in swine globally resulting in significant economic losses to the swine industry. Prevention of Glӓsser's disease in pigs has been plagued with an inability to design broadly protective vaccines, as many bacterin based platforms generate serovar or strain specific immunity. Subunit vaccines are of interest to provide protective immunity to multiple strains of G. parasuis. Selected proteins for subunit vaccination should be widespread, highly conserved, and surface exposed. RESULTS: Two candidate proteins for subunit vaccination (RlpB and VacJ) against G. parasuis were identified using random mutagenesis and an in vitro organ culture system. Pigs were vaccinated with recombinant RlpB and VacJ, outer membrane proteins with important contributions to cellular function and viability. Though high antibody titers to the recombinant proteins and increased interferon-γ producing cells were found in subunit vaccinated animals, the pigs were not protected from developing systemic disease. CONCLUSIONS: It appears there may be insufficient RlpB and VacJ exposed on the bacterial surface for antibody to bind, preventing high RlpB and VacJ specific antibody titers from protecting animals from G. parasuis. Additionally, this work confirms the importance of utilizing the natural host species when assessing the efficacy of vaccine candidates.


Asunto(s)
Infecciones por Haemophilus/veterinaria , Haemophilus parasuis/inmunología , Proteínas Recombinantes/inmunología , Enfermedades de los Porcinos/prevención & control , Animales , Anticuerpos Antibacterianos/sangre , Proteínas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Infecciones por Haemophilus/inmunología , Infecciones por Haemophilus/prevención & control , Vacunas contra Haemophilus/inmunología , Haemophilus parasuis/genética , Serogrupo , Sus scrofa , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/microbiología , Técnicas de Cultivo de Tejidos/veterinaria , Vacunación/veterinaria , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
13.
Infect Immun ; 88(5)2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32094250

RESUMEN

Glaesserella (Haemophilus) parasuis is a commensal bacterium of the upper respiratory tract in pigs and also the causative agent of Glässer's disease, which causes significant morbidity and mortality in pigs worldwide. Isolates are characterized into 15 serovars by their capsular polysaccharide, which has shown a correlation with isolate pathogenicity. To investigate the role the capsule plays in G. parasuis virulence and host interaction, a capsule mutant of the serovar 5 strain HS069 was generated (HS069Δcap) through allelic exchange following natural transformation. HS069Δcap was unable to cause signs of systemic disease during a pig challenge study and had increased sensitivity to complement killing and phagocytosis by alveolar macrophages. Compared with the parent strain, HS069Δcap produced more robust biofilm and adhered equivalently to 3D4/31 cells; however, it was unable to persistently colonize the nasal cavity of inoculated pigs, with all pigs clearing HS069Δcap by 5 days postchallenge. Our results indicate the importance of the capsular polysaccharide to G. parasuis virulence as well as nasal colonization in pigs.


Asunto(s)
Haemophilus parasuis/genética , Animales , Biopelículas , Infecciones por Haemophilus/microbiología , Macrófagos Alveolares/microbiología , Fagocitosis/fisiología , Porcinos , Enfermedades de los Porcinos/microbiología , Virulencia/genética
14.
Trends Microbiol ; 28(6): 465-477, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31948727

RESUMEN

Staphylococcus aureus is an important human bacterial pathogen that has a cosmopolitan host range, including livestock, companion and wild animal species. Genomic and epidemiological studies show that S. aureus has jumped between host species many times over its evolutionary history. These jumps have involved the dynamic gain and loss of host-specific adaptive genes, usually located on mobile genetic elements. The same functional elements are often consistently gained in jumps into a particular species. Further sampling of diverse animal species is likely to uncover an even broader host range and greater genetic diversity of S. aureus than is already known, and understanding S. aureus host specificity in these hosts will mitigate the risks of emergent human and livestock strains.


Asunto(s)
Evolución Molecular , Genómica , Especificidad del Huésped , Staphylococcus aureus/genética , Animales , Bacterias/genética , Adaptación al Huésped , Humanos , Secuencias Repetitivas Esparcidas , Ganado/microbiología , Infecciones Estafilocócicas/microbiología , Secuenciación Completa del Genoma
15.
Microbiol Resour Announc ; 9(1)2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31896621

RESUMEN

We report here the draft genome sequences of the type strains of Actinobacillus indolicus (46K2C) and Actinobacillus porcinus (NM319). These NAD-dependent bacterial species are frequently found in the upper respiratory tract of pigs and are occasionally associated with lung pathology.

17.
Philos Trans R Soc Lond B Biol Sci ; 374(1782): 20180328, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31401968

RESUMEN

Our understanding of the ecological and evolutionary context of novel infections is largely based on viral diseases, even though bacterial pathogens may display key differences in the processes underlying their emergence. For instance, host-shift speciation, in which the jump of a pathogen into a novel host species is followed by the specialization on that host and the loss of infectivity of previous host(s), is commonly observed in viruses, but less often in bacteria. Here, we suggest that the extent to which pathogens evolve host generalism or specialism following a jump into a novel host will depend on their level of adaptation to dealing with different environments, their rates of molecular evolution and their ability to recombine. We then explore these hypotheses using a formal model and show that the high levels of phenotypic plasticity, low rates of evolution and the ability to recombine typical of bacterial pathogens should reduce their propensity to specialize on novel hosts. Novel bacterial infections may therefore be more likely to result in transient spillovers or increased host ranges than in host shifts. Finally, consistent with our predictions, we show that, in two unusual cases of contemporary bacterial host shifts, the bacterial pathogens both have small genomes and rapid rates of substitution. Further tests are required across a greater number of emerging pathogens to assess the validity of our hypotheses. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.


Asunto(s)
Adaptación Fisiológica , Fenómenos Fisiológicos Bacterianos , Evolución Biológica , Especificidad del Huésped , Evolución Molecular , Modelos Teóricos
18.
J Clin Microbiol ; 57(7)2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30944194

RESUMEN

Streptococcus suis is one of the most important zoonotic bacterial pathogens of pigs, causing significant economic losses to the global swine industry. S. suis is also a very successful colonizer of mucosal surfaces, and commensal strains can be found in almost all pig populations worldwide, making detection of the S. suis species in asymptomatic carrier herds of little practical value in predicting the likelihood of future clinical relevance. The value of future molecular tools for surveillance and preventative health management lies in the detection of strains that genetically have increased potential to cause disease in presently healthy animals. Here we describe the use of genome-wide association studies to identify genetic markers associated with the observed clinical phenotypes (i) invasive disease and (ii) asymptomatic carriage on the palatine tonsils of pigs on UK farms. Subsequently, we designed a multiplex PCR to target three genetic markers that differentiated 115 S. suis isolates into disease-associated and non-disease-associated groups, that performed with a sensitivity of 0.91, a specificity of 0.79, a negative predictive value of 0.91, and a positive predictive value of 0.79 in comparison to observed clinical phenotypes. We describe evaluation of our pathotyping tool, using an out-of-sample collection of 50 previously uncharacterized S. suis isolates, in comparison to existing methods used to characterize and subtype S. suis isolates. In doing so, we show our pathotyping approach to be a competitive method to characterize S. suis isolates recovered from pigs on UK farms and one that can easily be updated to incorporate global strain collections.


Asunto(s)
Portador Sano/veterinaria , Infecciones Estreptocócicas/veterinaria , Streptococcus suis/aislamiento & purificación , Streptococcus suis/patogenicidad , Enfermedades de los Porcinos/microbiología , Animales , Portador Sano/microbiología , Inglaterra , Marcadores Genéticos/genética , Genoma Bacteriano/genética , Técnicas de Diagnóstico Molecular , Reacción en Cadena de la Polimerasa Multiplex , Tonsila Palatina/microbiología , Infecciones Estreptocócicas/microbiología , Streptococcus suis/genética , Porcinos , Virulencia/genética , Gales
19.
Nucleic Acids Res ; 46(21): 11466-11476, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30304532

RESUMEN

Streptococcus suis is a major pathogen of swine, responsible for a number of chronic and acute infections, and is also emerging as a major zoonotic pathogen, particularly in South-East Asia. Our study of a diverse population of S. suis shows that this organism contains both Type I and Type III phase-variable methyltransferases. In all previous examples, phase-variation of methyltransferases results in genome wide methylation differences, and results in differential regulation of multiple genes, a system known as the phasevarion (phase-variable regulon). We hypothesized that each variant in the Type I and Type III systems encoded a methyltransferase with a unique specificity, and could therefore control a distinct phasevarion, either by recombination-driven shuffling between different specificities (Type I) or by biphasic on-off switching via simple sequence repeats (Type III). Here, we present the identification of the target specificities for each Type III allelic variant from S. suis using single-molecule, real-time methylome analysis. We demonstrate phase-variation is occurring in both Type I and Type III methyltransferases, and show a distinct association between methyltransferase type and presence, and population clades. In addition, we show that the phase-variable Type I methyltransferase was likely acquired at the origin of a highly virulent zoonotic sub-population.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Metiltransferasas/genética , Regulón , Streptococcus suis/enzimología , Alelos , Animales , Metilación de ADN , Metilasas de Modificación del ADN/metabolismo , ADN Bacteriano/metabolismo , Epigénesis Genética , Escherichia coli , Variación Genética , Genoma Bacteriano , Repeticiones de Microsatélite , Oligonucleótidos/genética , Fenotipo , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/veterinaria , Streptococcus suis/genética , Porcinos
20.
Nat Ecol Evol ; 2(9): 1468-1478, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30038246

RESUMEN

The capacity for some pathogens to jump into different host-species populations is a major threat to public health and food security. Staphylococcus aureus is a multi-host bacterial pathogen responsible for important human and livestock diseases. Here, using a population-genomic approach, we identify humans as a major hub for ancient and recent S. aureus host-switching events linked to the emergence of endemic livestock strains, and cows as the main animal reservoir for the emergence of human epidemic clones. Such host-species transitions are associated with horizontal acquisition of genetic elements from host-specific gene pools conferring traits required for survival in the new host-niche. Importantly, genes associated with antimicrobial resistance are unevenly distributed among human and animal hosts, reflecting distinct antibiotic usage practices in medicine and agriculture. In addition to gene acquisition, genetic diversification has occurred in pathways associated with nutrient acquisition, implying metabolic remodelling after a host switch in response to distinct nutrient availability. For example, S. aureus from dairy cattle exhibit enhanced utilization of lactose-a major source of carbohydrate in bovine milk. Overall, our findings highlight the influence of human activities on the multi-host ecology of a major bacterial pathogen, underpinned by horizontal gene transfer and core genome diversification.


Asunto(s)
Interacciones Huésped-Patógeno , Staphylococcus aureus/fisiología , Animales , Bovinos , Evolución Molecular , Transferencia de Gen Horizontal , Genes Bacterianos , Genoma Bacteriano , Estudio de Asociación del Genoma Completo , Humanos , Ganado , Filogenia , Seudogenes , Infecciones Estafilocócicas/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...