Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 104(23): 9810-5, 2007 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-17517595

RESUMEN

We investigated the therapeutic effects of two different versions of Abeta(1-15 (16)) liposome-based vaccines. Inoculation of APP-V717IxPS-1 (APPxPS-1) double-transgenic mice with tetra-palmitoylated amyloid 1-15 peptide (palmAbeta(1-15)), or with amyloid 1-16 peptide (PEG-Abeta(1-16)) linked to a polyethyleneglycol spacer at each end, and embedded within a liposome membrane, elicited fast immune responses with identical binding epitopes. PalmAbeta(1-15) liposomal vaccine elicited an immune response that restored the memory defect of the mice, whereas that of PEG-Abeta(1-16) had no such effect. Immunoglobulins that were generated were predominantly of the IgG class with palmAbeta(1-15), whereas those elicited by PEG-Abeta(1-16) were primarily of the IgM class. The IgG subclasses of the antibodies generated by both vaccines were mostly IgG2b indicating noninflammatory Th2 isotype. CD and NMR revealed predominantly beta-sheet conformation of palmAbeta(1-15) and random coil of PEG-Abeta(1-16). We conclude that the association with liposomes induced a variation of the immunogenic structures and thereby different immunogenicities. This finding supports the hypothesis that Alzheimer's disease is a "conformational" disease, implying that antibodies against amyloid sequences in the beta-sheet conformation are preferred as potential therapeutic agents.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Vacunas contra el Alzheimer/inmunología , Péptidos beta-Amiloides/inmunología , Antígenos/inmunología , Encéfalo/metabolismo , Liposomas/inmunología , Reconocimiento en Psicología/efectos de los fármacos , Vacunas contra el Alzheimer/farmacología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Análisis de Varianza , Animales , Encéfalo/inmunología , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Mapeo Epitopo , Ratones , Ratones Transgénicos , Resonancia Magnética Nuclear Biomolecular , Oligopéptidos/genética , Fragmentos de Péptidos/inmunología
2.
J Magn Reson ; 187(1): 10-8, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17448715

RESUMEN

A novel coil, called Z coil, is presented. Its function is to reduce the strong thermal effects produced by rf heating at high frequencies. The results obtained at 500MHz in a 50 microl sample prove that the Z coil can cope with salt concentrations that are one order of magnitude higher than in traditional solenoidal coils. The evaluation of the rf field is performed by numerical analysis based on first principles and by carrying out rf field measurements. Reduction of rf heating is probed with a DMPC/DHPC membrane prepared in buffers of increasing salt concentrations. The intricate correlation that exists between the magnetic and electric field is presented. It is demonstrated that, in a multiply tuned traditional MAS coil, the rf electric field E(1) cannot be reduced without altering the rf magnetic field. Since the detailed distribution differs when changing the coil geometry, a comparison involving the following three distinct designs is discussed: (1) a regular coil of 5.5 turns, (2) a variable pitch coil with the same number of turns, (3) the new Z coil structure. For each of these coils loaded with samples of different salt concentrations, the nutation fields obtained at a certain power level provide a basis to discuss the impact of the dielectric and conductive losses on the rf efficiency.


Asunto(s)
Espectroscopía de Resonancia Magnética/instrumentación , Simulación por Computador , Dimiristoilfosfatidilcolina/química , Campos Electromagnéticos , Membranas Artificiales , Modelos Químicos , Éteres Fosfolípidos/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...