Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oecologia ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829402

RESUMEN

Plants employ diverse anti-herbivore defences that can covary to form syndromes consisting of multiple traits. Such syndromes are hypothesized to impact herbivores more than individual defences. We studied 16 species of lowland willows occurring in central Europe and explored if their chemical and physical traits form detectable syndromes. We tested for phylogenetic trends in the syndromes and explored whether three herbivore guilds (i.e., generalist leaf-chewers, specialist leaf-chewers, and gallers) are affected more by the detected syndromes or individual traits. The recovered syndromes showed low phylogenetic signal and were mainly defined by investment in concentration, richness, or uniqueness of structurally related phenolic metabolites. Resource acquisition traits or inducible volatile organic compounds exhibited a limited correlation with the syndromes. Individual traits composing the syndromes showed various correlations to the assemblages of herbivores from the three studied guilds. In turn, we found some support for the hypothesis that defence syndromes are composed of traits that provide defence against various herbivores. However, individual traits rather than trait syndromes explained more variation for all studied herbivore assemblages. The detected negative correlations between various phenolics suggest that investment trade-offs may occur primarily among plant metabolites with shared metabolic pathways that may compete for their precursors. Moreover, several traits characterizing the recovered syndromes play additional roles in willows other than defence from herbivory. Taken together, our findings suggest that the detected syndromes did not solely evolve as an anti-herbivore defence.

2.
Ecol Evol ; 13(11): e10667, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37928199

RESUMEN

Plant and soil biodiversity can have significant effects on herbivore resistance mediated by plant metabolites. Here, we disentangled the independent effects of plant diversity and soil legacy on constitutive and herbivore-induced plant metabolomes of three plant species in two complementary microcosm experiments. First, we grew plants in sterile soil with three different plant diversity levels. Second, single plant species were grown on soil with different plant diversity-induced soil legacies. We infested a subset of all plants with Spodoptera exigua larvae, a generalist leaf-chewing herbivore, and assessed foliar and root metabolomes. Neither plant diversity nor soil legacy had significant effects on overall foliar, root, or herbivore-induced metabolome composition. Herbivore-induced metabolomes, however, differed from those of control plants. We detected 139 significantly regulated metabolites by comparing plants grown in monocultures with conspecifics growing in plant or soil legacy mixtures. Moreover, plant-plant and plant-soil interactions regulated 141 metabolites in herbivore-induced plants. Taken together, plant diversity and soil legacy independently alter the concentration and induction of plant metabolites, thus affecting the plant's defensive capability. This is a first step toward disentangling plant and soil biodiversity effects on herbivore resistance, thereby improving our understanding of the mechanisms that govern ecosystem functioning.

3.
Ecol Evol ; 13(5): e10123, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37255847

RESUMEN

Plants produce diverse chemical defenses with contrasting effects on different insect herbivores. Deploying herbivore-specific responses can help plants increase their defensive efficiency. Here, we explore how variation in induced plant responses correlates with herbivore species, order, feeding guild, and level of specialization. In a greenhouse experiment, we exposed 149 plants of Salix fragilis (Linnaeus, 1753) to 22 herbivore species naturally associated with this host. The insects belonged to four orders (Coleoptera, Lepidoptera, Hemiptera, and Hymenoptera), three feeding guilds (external leaf-chewers, leaf-tying chewers, and sap-sucking), and included both dietary specialists and generalists. Following herbivory, we quantified induced changes in volatiles and nonvolatile leaf metabolites. We performed multivariate analyses to assess the correlation between herbivore order, feeding guild, dietary specialization, chewing damage by herbivores, and induced responses. The volatile composition was best explained by chewing damage and insect order, with Coleoptera and Lepidoptera eliciting significantly different responses. Furthermore, we recorded significant differences in elicited volatiles among some species within the two orders. Variation in nonvolatile leaf metabolites was mainly explained by the presence of insects, as plants exposed to herbivores showed significantly different metabolites from controls. Herbivore order also played a role to some extent, with beetles eliciting different responses than other herbivores. The induction of volatile and nonvolatile leaf metabolites shows different levels of specificity. The specificity in volatiles could potentially serve as an important cue to specialized predators or parasitoids, increasing the efficacy of volatiles as indirect defenses. By contrast, the induction of nonvolatile leaf metabolites was largely unaffected by herbivore identity. Most nonvolatile metabolites were downregulated, possibly indicating that plants redirected their resources from leaves in response to herbivory. Our results demonstrate how diverse responses to herbivores can contribute to the diversity of plant defensive strategies.

4.
Plant Cell Environ ; 46(6): 1885-1899, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36794528

RESUMEN

Plants influence numerous soil biotic factors that can alter the performance of later growing plants-defined as plant-soil feedback (PSF). Here, we investigate whether PSF effects are linked with the temporal changes in root exudate diversity and the rhizosphere microbiome of two common grassland species (Holcus lanatus and Jacobaea vulgaris). Both plant species were grown separately establishing conspecific and heterospecific soils. In the feedback phase, we determined plant biomass, measured root exudate composition, and characterised rhizosphere microbial communities weekly (eight time points). Over time, we found a strong negative conspecific PSF on J. vulgaris in its early growth phase which changed into a neutral PSF, whereas H. lanatus exhibited a more persistent negative PSF. Root exudate diversity increased considerably over time for both plant species. Rhizosphere microbial communities were distinct in conspecific and heterospecific soils and showed strong temporal patterns. Bacterial communities converged over time. Using path models, PSF effects could be linked to the temporal dynamics of root exudate diversity, whereby shifts in rhizosphere microbial diversity contributed to temporal variation in PSF to a lesser extent. Our results highlight the importance of root exudates and rhizosphere microbial communities in driving temporal changes in the strength of PSF effects.


Asunto(s)
Microbiota , Rizosfera , Suelo , Microbiología del Suelo , Retroalimentación , Raíces de Plantas/microbiología , Plantas , Exudados y Transudados
5.
Microbiome ; 10(1): 225, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36510248

RESUMEN

The measurement of uncharacterized pools of biological molecules through techniques such as metabarcoding, metagenomics, metatranscriptomics, metabolomics, and metaproteomics produces large, multivariate datasets. Analyses of these datasets have successfully been borrowed from community ecology to characterize the molecular diversity of samples (ɑ-diversity) and to assess how these profiles change in response to experimental treatments or across gradients (ß-diversity). However, sample preparation and data collection methods generate biases and noise which confound molecular diversity estimates and require special attention. Here, we examine how technical biases and noise that are introduced into multivariate molecular data affect the estimation of the components of diversity (i.e., total number of different molecular species, or entities; total number of molecules; and the abundance distribution of molecular entities). We then explore under which conditions these biases affect the measurement of ɑ- and ß-diversity and highlight how novel methods commonly used in community ecology can be adopted to improve the interpretation and integration of multivariate molecular data. Video Abstract.


Asunto(s)
Ecología , Metagenómica , Ecología/métodos , Metagenómica/métodos , Metabolómica/métodos
6.
Front Physiol ; 13: 1003746, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338467

RESUMEN

Beneficial root microbes are among the most frequently used biocontrol agents in cropping systems, since they have been shown to promote plant growth and crop yield. Moreover, they are able to enhance protection against pathogens and insect herbivores by activating plant resistance mechanisms. Plant defense responses against herbivorous insects include the induction of metabolic pathways involved in the synthesis of defense-related metabolites. These metabolites include volatile organic compounds (VOCs), which attract natural enemies of the herbivores as a form of indirect resistance. Considering that beneficial root microbes may affect direct herbivore resistance, we hypothesized that also indirect resistance may be affected. We tested this hypothesis in a study system composed of tomato, the arbuscular mycorrhizal fungus Rhizophagus irregularis, the growth-promoting fungus Trichoderma harzianum, the generalist chewing herbivore Spodoptera exigua and the omnivorous predator Macrolophus pygmaeus. Using a Y-tube olfactometer we found that M. pygmaeus preferred plants with S. exigua herbivory, but microbe-inoculated plants more than non-inoculated ones. We used a targeted GC-MS approach to assess the impact of beneficial microbes on the emission of volatiles 24 h after herbivory to explain the choice of M. pygmaeus. We observed that the volatile composition of the herbivore-infested plants differed from that of the non-infested plants, which was driven by the higher emission of green leaf volatile compounds, methyl salicylate, and several monoterpenes and sesquiterpenes. Inoculation with microbes had only a marginal effect on the emission of some terpenoids in our experiment. Gene expression analysis showed that the marker genes involved in the jasmonic and salicylic acid pathways were differentially expressed in the microbe-inoculated plants after herbivory. Our results pinpoint the role of root symbionts in determining plant-microbe-insect interactions up to the third trophic level, and elucidates their potential to be used in plant protection.

7.
Front Physiol ; 13: 874527, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574438

RESUMEN

Like aboveground herbivores, belowground herbivores are confronted with multiple plant defense mechanisms including complex chemical cocktails in plant tissue. Roots and shoots of Brassicaceae plants contain the two-component glucosinolate (GSL)-myrosinase defense system. Upon cell damage, for example by herbivore feeding, toxic and pungent isothiocyanates (ITCs) can be formed. Several aboveground-feeding herbivores have developed biochemical adaptation strategies to overcome the GSL-ITC defenses of their host plant. Whether belowground herbivores feeding on Brassica roots possess similar mechanisms has received little attention. Here, we analyze how two related belowground specialist herbivores detoxify the GSL-ITC defenses of their host plants. The larvae of the fly species Delia radicum and D. floralis are common pests and specialized herbivores on the roots of Brassicaceae. We used chemical analyses (HPLC-MS/MS and HPLC-UV) to examine how the GSL-ITC defense system is metabolized by these congeneric larvae. In addition, we screened for candidate genes involved in the detoxification process using RNAseq and qPCR. The chemical analyses yielded glutathione conjugates and amines. This indicates that both species detoxify ITCs using potentially the general mercapturic acid pathway, which is also found in aboveground herbivores, and an ITC-specific hydrolytic pathway previously characterized in microbes. Performance assays confirmed that ITCs negatively affect the survival of both species, in spite of their known specialization to ITC-producing plants and tissues, whereas ITC breakdown products are less toxic. Interestingly, the RNAseq analyses showed that the two congeneric species activate different sets of genes upon ITC exposure, which was supported by qPCR data. Based on our findings, we conclude that these specialist larvae use combinations of general and compound-specific detoxification mechanisms with differing efficacies and substrate preferences. This indicates that combining detoxification mechanisms can be an evolutionarily successful strategy to handle plant defenses in herbivores.

8.
Ecol Lett ; 25(4): 729-739, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34958165

RESUMEN

Forest canopies are complex and highly diverse environments. Their diversity is affected by pronounced gradients in abiotic and biotic conditions, including variation in leaf chemistry. We hypothesised that branch-localised defence induction and vertical stratification in mature oaks constitute sources of chemical variation that extend across trophic levels. To test this, we combined manipulation of plant defences, predation monitoring, food-choice trials with herbivores and sampling of herbivore assemblages. Both induction and vertical stratification affected branch chemistry, but the effect of induction was stronger. Induction increased predation in the canopy and reduced herbivory in bioassays. The effects of increased predation affected herbivore assemblages by decreasing their abundance, and indirectly, their richness. In turn, we show that there are multiple factors contributing to variation across canopies. Branch-localised induction, variation between tree individuals and predation may be the ones with particularly strong effects on diverse assemblages of insects in temperate forests.


Asunto(s)
Herbivoria , Árboles , Animales , Bosques , Insectos , Hojas de la Planta , Conducta Predatoria
9.
Metabolites ; 11(11)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34822389

RESUMEN

Root mutualistic microbes can modulate the production of plant secondary metabolites affecting plant-herbivore interactions. Still, the main mechanisms underlying the impact of root mutualists on herbivore performance remain ambiguous. In particular, little is known about how changes in the plant metabolome induced by root mutualists affect the insect metabolome and post-larval development. By using bioassays with tomato plants (Solanum lycopersicum), we analyzed the impact of the arbuscular mycorrhizal fungus Rhizophagus irregularis and the growth-promoting fungus Trichoderma harzianum on the plant interaction with the specialist insect herbivore Manduca sexta. We found that root colonization by the mutualistic microbes impaired insect development, including metamorphosis. By using untargeted metabolomics, we found that root colonization by the mutualistic microbes altered the secondary metabolism of tomato shoots, leading to enhanced levels of steroidal glycoalkaloids. Untargeted metabolomics further revealed that root colonization by the mutualists affected the metabolome of the herbivore, leading to an enhanced accumulation of steroidal glycoalkaloids and altered patterns of fatty acid amides and carnitine-derived metabolites. Our results indicate that the changes in the shoot metabolome triggered by root mutualistic microbes can cascade up altering the metabolome of the insects feeding on the colonized plants, thus affecting the insect development.

10.
Plant Physiol ; 187(3): 1762-1778, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34618073

RESUMEN

Shoot herbivores may influence the communities of herbivores associated with the roots via inducible defenses. However, the molecular mechanisms and hormonal signaling underpinning the systemic impact of leaf herbivory on root-induced responses against nematodes remain poorly understood. By using tomato (Solanum lycopersicum) as a model plant, we explored the impact of leaf herbivory by Manduca sexta on the performance of the root knot nematode Meloidogyne incognita. By performing glasshouse bioassays, we found that leaf herbivory reduced M. incognita performance in the roots. By analyzing the root expression profile of a set of oxylipin-related marker genes and jasmonate root content, we show that leaf herbivory systemically activates the 13-Lipoxigenase (LOX) and 9-LOX branches of the oxylipin pathway in roots and counteracts the M. incognita-triggered repression of the 13-LOX branch. By using untargeted metabolomics, we also found that leaf herbivory counteracts the M. incognita-mediated repression of putative root chemical defenses. To explore the signaling involved in this shoot-to-root interaction, we performed glasshouse bioassays with grafted plants compromised in jasmonate synthesis or perception, specifically in their shoots. We demonstrated the importance of an intact shoot jasmonate perception, whereas having an intact jasmonate biosynthesis pathway was not essential for this shoot-to-root interaction. Our results highlight the impact of leaf herbivory on the ability of M. incognita to manipulate root defenses and point to an important role for the jasmonate signaling pathway in shoot-to-root signaling.


Asunto(s)
Ciclopentanos/metabolismo , Herbivoria , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología , Solanum lycopersicum/fisiología , Animales , Manduca/fisiología , Tylenchoidea/fisiología
11.
Ecol Evol ; 11(16): 10917-10925, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34429890

RESUMEN

When searching for food, great tits (Parus major) can use herbivore-induced plant volatiles (HIPVs) as an indicator of arthropod presence. Their ability to detect HIPVs was shown to be learned, and not innate, yet the flexibility and generalization of learning remain unclear.We studied if, and if so how, naïve and trained great tits (Parus major) discriminate between herbivore-induced and noninduced saplings of Scotch elm (Ulmus glabra) and cattley guava (Psidium cattleyanum). We chemically analyzed the used plants and showed that their HIPVs differed significantly and overlapped only in a few compounds.Birds trained to discriminate between herbivore-induced and noninduced saplings preferred the herbivore-induced saplings of the plant species they were trained to. Naïve birds did not show any preferences. Our results indicate that the attraction of great tits to herbivore-induced plants is not innate, rather it is a skill that can be acquired through learning, one tree species at a time.We demonstrate that the ability to learn to associate HIPVs with food reward is flexible, expressed to both tested plant species, even if the plant species has not coevolved with the bird species (i.e., guava). Our results imply that the birds are not capable of generalizing HIPVs among tree species but suggest that they either learn to detect individual compounds or associate whole bouquets with food rewards.

12.
Plant Cell Environ ; 44(4): 1215-1230, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33455010

RESUMEN

Soil legacies play an important role for the creation of priority effects. However, we still poorly understand to what extent the metabolome found in the soil solution of a plant community is conditioned by its species composition and whether soil chemical legacies affect subsequent species during assembly. To test these hypotheses, we collected soil solutions from forb or grass communities and evaluated how the metabolome of these soil solutions affected the growth, biomass allocation and functional traits of a forb (Dianthus deltoides) and a grass species (Festuca rubra). Results showed that the metabolomes found in the soil solutions of forb and grass communities differed in composition and chemical diversity. While soil chemical legacies did not have any effect on F. rubra, root foraging by D. deltoides decreased when plants received the soil solution from a grass or a forb community. Structural equation modelling showed that reduced soil exploration by D. deltoides arose via either a root growth-dependent pathway (forb metabolome) or a root trait-dependent pathway (grass metabolome). Reduced root foraging was not connected to a decrease in total N uptake. Our findings reveal that soil chemical legacies can create belowground priority effects by affecting root foraging in later arriving plants.


Asunto(s)
Dianthus/fisiología , Festuca/fisiología , Raíces de Plantas/fisiología , Suelo , Biomasa , Dianthus/crecimiento & desarrollo , Ecología , Festuca/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Suelo/química
13.
Plant J ; 106(2): 314-325, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33506558

RESUMEN

Volatile organic compounds (VOCs) released by plants serve as information and defense chemicals in mutualistic and antagonistic interactions and mitigate effects of abiotic stress. Passive and dynamic sampling techniques combined with gas chromatography-mass spectrometry analysis have become routine tools to measure emissions of VOCs and determine their various functions. More recently, knowledge of the roles of plant VOCs in the aboveground environment has led to the exploration of similar functions in the soil and rhizosphere. Moreover, VOC patterns have been recognized as sensitive and time-dependent markers of biotic and abiotic stress. This focused review addresses these developments by presenting recent progress in VOC sampling and analysis. We show advances in the use of small, inexpensive sampling devices and describe methods to monitor plant VOC emissions in the belowground environment. We further address latest trends in real-time measurements of volatilomes in plant phenotyping and most recent developments of small portable devices and VOC sensors for non-invasive VOC fingerprinting of plant disease. These technologies allow for innovative approaches to study plant VOC biology and application in agriculture.


Asunto(s)
Plantas/química , Compuestos Orgánicos Volátiles/análisis , Componentes Aéreos de las Plantas/química , Enfermedades de las Plantas , Raíces de Plantas/química , Plantas/metabolismo , Suelo
14.
J Chem Ecol ; 47(1): 99-111, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33180276

RESUMEN

Induction of plant defences can show various levels of localization, which can optimize their efficiency. Locally induced responses may be particularly important in large plants, such as trees, that show high variability in traits and herbivory rates across their canopies. We studied the branch-localized induction of polyphenols, volatiles (VOCs), and changes in leaf protein content in Carpinus betulus L., Quercus robur L., and Tilia cordata L. in a common garden experiment. To induce the trees, we treated ten individuals per species on one branch with methyl jasmonate. Five other individuals per species served as controls. We measured the traits in the treated branches, in control branches on treated trees, and in control trees. Additionally, we ran predation assays and caterpillar food-choice trials to assess the effects of our treatment on other trophic levels. Induced VOCs included mainly mono- and sesquiterpenes. Their production was strongly localized to the treated branches in all three tree species studied. Treated trees showed more predation events than control trees. The polyphenol levels and total protein content showed a limited response to the treatment. Yet, winter moth caterpillars preferred leaves from control branches over leaves from treated branches within C. betulus individuals and leaves from control Q. robur individuals over leaves from treated Q. robur individuals. Our results suggest that there is a significant level of localization in induction of VOCs and probably also in unknown traits with direct effects on herbivores. Such localization allows trees to upregulate defences wherever and whenever they are needed.


Asunto(s)
Fagales/metabolismo , Herbivoria , Defensa de la Planta contra la Herbivoria , Árboles/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Animales , Fagales/química , Insectos , Análisis de Componente Principal , Tilia/química , Tilia/metabolismo , Árboles/química , Compuestos Orgánicos Volátiles/análisis
15.
Front Plant Sci ; 11: 803, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32625224

RESUMEN

Induced plant responses to insect herbivores are well studied, but we know very little about responses to gastropod feeding. We aim to identify the temporal dynamics of signaling- and defense-related plant responses after slug feeding in relation to induced resistance. We exposed Solanum dulcamara plants to feeding by the gray field slug (GFS; Deroceras reticulatum) for different periods and tested disks of local and systemic leaves in preference assays. Induced responses were analyzed using metabolomics and transcriptomics. GFS feeding induced local and systemic responses. Slug feeding for 72 h more strongly affected the plant metabolome than 24 h feeding. It increased the levels of a glycoalkaloid (solasonine), phenolamides, anthocyanins, and trypsin protease inhibitors as well as polyphenol oxidase activity. Phytohormone and transcriptome analyses revealed that jasmonic acid, abscisic acid and salicylic acid signaling were activated. GFS feeding upregulated more genes than that it downregulated. The response directly after feeding was more than five times higher than after an additional 24 h without feeding. Our research showed that GFS, like most chewing insects, triggers anti-herbivore defenses by activating defense signaling pathways, resulting in increased resistance to further slug feeding. Slug herbivory may therefore impact other herbivores in the community.

16.
New Phytol ; 222(1): 144-158, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30289558

RESUMEN

Carbon (C) allocation plays a central role in tree responses to environmental changes. Yet, fundamental questions remain about how trees allocate C to different sinks, for example, growth vs storage and defense. In order to elucidate allocation priorities, we manipulated the whole-tree C balance by modifying atmospheric CO2 concentrations [CO2 ] to create two distinct gradients of declining C availability, and compared how C was allocated among fluxes (respiration and volatile monoterpenes) and biomass C pools (total biomass, nonstructural carbohydrates (NSC) and secondary metabolites (SM)) in well-watered Norway spruce (Picea abies) saplings. Continuous isotope labelling was used to trace the fate of newly-assimilated C. Reducing [CO2 ] to 120 ppm caused an aboveground C compensation point (i.e. net C balance was zero) and resulted in decreases in growth and respiration. By contrast, soluble sugars and SM remained relatively constant in aboveground young organs and were partially maintained with a constant allocation of newly-assimilated C, even at expense of root death from C exhaustion. We conclude that spruce trees have a conservative allocation strategy under source limitation: growth and respiration can be downregulated to maintain 'operational' concentrations of NSC while investing newly-assimilated C into future survival by producing SM.


Asunto(s)
Picea/crecimiento & desarrollo , Picea/inmunología , Atmósfera/química , Biomasa , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Fenoles/metabolismo , Tallos de la Planta/metabolismo , Solubilidad , Almidón/metabolismo , Azúcares/metabolismo , Terpenos/metabolismo , Factores de Tiempo
17.
J Chem Ecol ; 45(2): 146-161, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29961916

RESUMEN

Solanum dulcamara (Bittersweet nightshade) shows significant intraspecific variation in glycoalkaloid (GA) composition and concentration. We previously showed that constitutive differences in overall GA levels are correlated with feeding preference of the grey field slug (GFS; Deroceras reticulatum). One particularly preferred accession, ZD11, contained low GA levels, but high levels of previously unknown structurally related uronic acid conjugated compounds (UACs). Here we test whether different slug species as well as insect herbivores show similar feeding preferences among six S. dulcamara accessions with different GA chemotypes. In addition, we investigate whether slug feeding can lead to induced changes in the chemical composition and affect later arriving herbivores. A leaf disc assay using greenhouse-grown plants showed that three slug species similarly preferred accessions with low GA levels. Untargeted metabolomic analyses showed that previous slug feeding consistently increased the levels of N-caffeoyl-putrescine and a structurally related metabolite, but not the levels of GAs and UACs. Slug-induced responses only affected slug preference in one accession. A common garden experiment using the same six accessions revealed that ZD11 received the highest natural gastropod feeding damage, but suffered the lowest damage by specialist flea beetles. The latter preferred to feed on accessions with high GA levels. Our study indicates that different selection pressures imposed by generalist gastropods and specialist insects may explain part of the observed chemical diversity in S. dulcamara.


Asunto(s)
Gastrópodos/fisiología , Insectos/fisiología , Solanum/química , Alcaloides/química , Alcaloides/metabolismo , Alcaloides/farmacología , Animales , Cromatografía Líquida de Alta Presión , Gastrópodos/efectos de los fármacos , Herbivoria/efectos de los fármacos , Insectos/efectos de los fármacos , Metaboloma , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Análisis de Componente Principal , Solanum/metabolismo , Espectrometría de Masas en Tándem
18.
Front Plant Sci ; 9: 1603, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30459791

RESUMEN

Beneficial microorganisms are known to promote plant growth and confer resistance to biotic and abiotic stressors. Soil-borne beneficial microbes in particular have shown potential in protecting plants against pathogens and herbivores via the elicitation of plant responses. In this study, we evaluated the role of Fusarium solani strain K (FsK) in altering plant responses to the two spotted spider mite Tetranychus urticae in tomato. We found evidence that FsK, a beneficial endophytic fungal strain isolated from the roots of tomato plants grown on suppressive compost, affects both direct and indirect tomato defenses against spider mites. Defense-related genes were differentially expressed on FsK-colonized plants after spider mite infestation compared to clean or spider mite-infested un-colonized plants. In accordance, spider mite performance was negatively affected on FsK-colonized plants and feeding damage was lower on these compared to control plants. Notably, FsK-colonization led to increased plant biomass to both spider mite-infested and un-infested plants. FsK was shown to enhance indirect tomato defense as FsK-colonized plants attracted more predators than un-colonized plants. In accordance, headspace volatile analysis revealed significant differences between the volatiles emitted by FsK-colonized plants in response to attack by spider mites. Our results highlight the role of endophytic fungi in shaping plant-mite interactions and may offer the opportunity for the development of a novel tool for spider mite control.

19.
Environ Sci Technol ; 52(23): 13811-13823, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30335995

RESUMEN

Volatile organic compounds (VOC) play important roles in atmospheric chemistry, plant ecology, and physiology, and biogenic VOC (BVOC) emitted by plants is the largest VOC source. Our knowledge about how environmental drivers (e.g., carbon, light, and temperature) may regulate BVOC emissions is limited because they are often not controlled. We combined a greenhouse facility to manipulate atmospheric CO2 ([CO2]) with proton-transfer-reaction mass spectrometry (PTR-MS) and cavity ring-down spectroscopy to investigate the regulation of BVOC in Norway spruce. Our results indicate a direct relationship between [CO2] and methanol and acetone emissions, and their temperature and light dependencies, possibly related to substrate availability. The composition of monoterpenes stored in needles remained constant, but emissions of mono-(linalool) and sesquiterpenes (ß-farnesene) increased at lower [CO2], with the effects being most pronounced at the highest air temperature. Pulse-labeling suggested an immediate incorporation of recently assimilated carbon into acetone, mono- and sesquiterpene emissions even under 50 ppm [CO2]. Our results provide new perspectives on CO2, temperature and light effects on BVOC emissions, in particular how they depend on stored pools and recent photosynthetic products. Future studies using smaller but more seedlings may allow sufficient replication to examine the physiological mechanisms behind the BVOC responses.


Asunto(s)
Dióxido de Carbono , Compuestos Orgánicos Volátiles , Espectrometría de Masas , Noruega , Protones , Análisis Espectral , Temperatura
20.
Int J Mol Sci ; 19(5)2018 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-29734799

RESUMEN

The relatively new research discipline of Eco-Metabolomics is the application of metabolomics techniques to ecology with the aim to characterise biochemical interactions of organisms across different spatial and temporal scales. Metabolomics is an untargeted biochemical approach to measure many thousands of metabolites in different species, including plants and animals. Changes in metabolite concentrations can provide mechanistic evidence for biochemical processes that are relevant at ecological scales. These include physiological, phenotypic and morphological responses of plants and communities to environmental changes and also interactions with other organisms. Traditionally, research in biochemistry and ecology comes from two different directions and is performed at distinct spatiotemporal scales. Biochemical studies most often focus on intrinsic processes in individuals at physiological and cellular scales. Generally, they take a bottom-up approach scaling up cellular processes from spatiotemporally fine to coarser scales. Ecological studies usually focus on extrinsic processes acting upon organisms at population and community scales and typically study top-down and bottom-up processes in combination. Eco-Metabolomics is a transdisciplinary research discipline that links biochemistry and ecology and connects the distinct spatiotemporal scales. In this review, we focus on approaches to study chemical and biochemical interactions of plants at various ecological levels, mainly plant⁻organismal interactions, and discuss related examples from other domains. We present recent developments and highlight advancements in Eco-Metabolomics over the last decade from various angles. We further address the five key challenges: (1) complex experimental designs and large variation of metabolite profiles; (2) feature extraction; (3) metabolite identification; (4) statistical analyses; and (5) bioinformatics software tools and workflows. The presented solutions to these challenges will advance connecting the distinct spatiotemporal scales and bridging biochemistry and ecology.


Asunto(s)
Ecología , Metabolómica/tendencias , Plantas/genética , Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...